# Alfvén eigenmodes (AE) degrade fast-ion confinement in high $\beta_N$ , steady-state scenarios

W.W. (Bill) Heidbrink<sup>1</sup> with J. Ferron,<sup>2</sup> C. Holcomb,<sup>3</sup> M. Van Zeeland<sup>2</sup>, E. Bass<sup>4</sup>, X. Chen<sup>2</sup>, C. Collins<sup>1</sup>, A. Garofalo<sup>2</sup>, X. Gong<sup>5</sup>, N. Gorelenkov<sup>6</sup>, B. Grierson<sup>6</sup>, C. Petty<sup>2</sup>, M. Podestà<sup>6</sup>, D. Spong<sup>7</sup>, L. Stagner<sup>1</sup>, Y. Zhu<sup>1</sup>

<sup>1</sup>University of California, Irvine
<sup>2</sup>General Atomics
<sup>3</sup>Lawrence Livermore National Laboratory
<sup>4</sup>University of California, San Diego
<sup>5</sup>Institute of Plasma Physics
Chinese Academy of Science
<sup>6</sup>Princeton Plasma Physics
Laboratory
<sup>7</sup>Oak Ridge National Laboratory







# Steady-state Advanced Tokamak (AT) scenarios often have elevated values of safety factor q



 Projections predict a stable β<sub>N</sub>=5 steady-state scenario in DIII-D with increased ECCD and off-axis NBI



#### Many DIII-D discharges with q<sub>min</sub>>2 have poor global confinement





### Outline

- 1. AEs degrade fast-ion confinement in many steady-state scenario discharges
- 2. Degradation of fast-ion confinement can account for the overall degradation in global confinement
- 3. Physical mechanism of fast-ion transport: critical gradient behavior due to many waveparticle resonances
- 4. Outlook

# Use TRANSP to quantify the degradation in fast-ion signals



- Use spatially uniform ad hoc fast-ion diffusion D<sub>f</sub> in TRANSP as an empirical measure of degraded fast-ion confinement
- Alternatively, use ratio of signal to "classical" prediction
- Global confinement varies with fast-ion confinement

#### The qmin~2 discharge has more AEs and worse confinement than the qmin~1 discharge





#### Many Alfvén Eigenmodes are Observed & Expected



GYRO

#### q<sub>min</sub>~1 data agree with predicted fast-ion signals





# $q_{min}$ ~1 data agree with predicted fast-ion signals but $q_{min}$ ~2 data do not





### Assuming fast-ion diffusion of 1.3 m<sup>2</sup>/s gives approximate agreement with qmin~2 data





#### Degraded fast-ion signals correlate with increasing Alfvén eigenmode activity

- Every diagnostic that is sensitive to co-passing fast ions measures reductions
- The "AE Amplitude" is the average amplitude of coherent modes in the TAE band (from interferometer signals)
- Data from quasistationary portion of steady-state scenario discharges



### Outline

- 1. AEs degrade fast-ion confinement in steadystate scenario discharges
- 2. Degradation of fast-ion confinement can account for the overall degradation in global confinement
- 3. Physical mechanism of fast-ion transport: critical gradient behavior due to many waveparticle resonances
- 4. Outlook



## Enhanced fast-ion transport can explain the apparent reduction in thermal confinement at high qmin





## Enhanced fast-ion transport can explain the apparent reduction in thermal confinement at high qmin



 $\rightarrow$  Thermal diffusivities like qmin ~1 discharge



### Outline

- 1. AEs degrade fast-ion confinement in many steady-state scenario discharges
- 2. Degradation of fast-ion confinement can account for the overall degradation in global confinement
- 3. Physical mechanism of fast-ion transport: critical gradient behavior due to many waveparticle resonances
- 4. Outlook

## Different combinations of on-axis & off-axis beams vary the fast-ion gradient that drives AEs



#### As predicted by linear AE stability theory, a steeper gradient drives more AE activity



#### Stronger AE activity causes a larger fast-ion deficit





#### The measured fast-ion profile is nearly the same for all angles of injection!



- CLASSICAL BEAM PROFILES Beam Mix=0.0 #146102 @550 ms 0.4 0.6 08 NORMALIZED MINORRADIUS
- Suggests the fast-ion transport is "stiff"
- The linear stability threshold acts (approximately) as a "critical gradient"

*Of course, in quiet plasmas, the* profiles differ.



#### A critical gradient model\* reproduces the observed trend



\*Ghantous, Phys. Pl. 19 (2012) 092511.



Gorelenkov TH/P1-2

#### Recent Data Supports Critical Gradient Model of Alfven Eigenmode (AE) Induced Fast Ion Transport

- Beam power scan varies AE amplitude
- Modulated off-axis beam allows measurement of incremental fastion flux
- Local fast-ion density ceases to rise above certain input power/ AE amplitudes
  - SSNPA Neutral particle analyzer -> fastion density localized in phase space





# Above threshold, the modulated signal is strongly distorted by AE transport





- Conditionally average the modulated signal
- At low power, the signal agrees well with a classical model
- Classically, the amplitude of the modulated signal should increase at high power



# Infer the fast-ion transport from a continuity equation for the measured "density"

- Define a "density" that incorporates the phase-space sensitivity W in its definition
- Multiply the kinetic equation by  $\int W d\vec{v}$ to derive a fluid equation. Here, S is the beam source and n/T is the thermalization sink
- Linearize. Obtain a continuity equation for 1<sup>st</sup> order (modulated) quantities
- When the AEs are absent, the transport term is negligible → measure source in a low-power shot
- With AEs, use the measured n to infer the divergence of the fast-ion flux

Weight Function
$$n = \int FW \, d\vec{v},$$
Distribution Function

$$\frac{\partial n}{\partial t} + \nabla \cdot \Gamma = S - \frac{n}{\tau}.$$
"Flux"

$$\frac{\partial \tilde{n}}{\partial t} + \nabla \cdot \tilde{\Gamma} = \tilde{S} - \frac{\tilde{n}}{\tau}.$$

$$\tilde{S} = \frac{\tilde{n}}{\tau} + \frac{\partial \tilde{n}}{\partial t}.$$

$$\nabla \cdot \tilde{\Gamma} = \tilde{S} - \frac{\tilde{n}}{\tau} - \frac{\partial \tilde{n}}{\partial t},$$

#### Divergence of fast-ion flux abruptly increases above an AE threshold $\rightarrow$ critical gradient behavior



#### Many small-amplitude resonances → "stiff" transport



Use

 constants of-motion to
 describe
 complex
 Energetic
 Particle
 orbits



#### Many small-amplitude resonances → "stiff" transport



 Injected beams populate the co-passing & trapped portions of phase space

NATIONAL FUSION FACILITY

#### Many small-amplitude resonances → "stiff" transport



# The high qmin steady-state scenario plasmas also have many resonances



NATIONAL FUSION FACILITY

### Outline

- 1. AEs degrade fast-ion confinement in many steady-state scenario discharges
- 2. Degradation of fast-ion confinement can account for the overall degradation in global confinement
- 3. Physical mechanism of fast-ion transport: critical gradient behavior due to many waveparticle resonances
- 4. Outlook



# New strategies are needed to overcome critical gradient behavior

Above AE stability threshold, additional on-axis beam power is ineffective

- More off-axis beam power (broader beam profile)
   Nucl. Fusion 53 (2013) 093006
- Better thermal confinement (less auxiliary power for same β<sub>N</sub>) PPC/P2-31, EX/P2-39
- Replace beam-driven current with RF TH/P2-38
- Modify AE stability Nucl. Fusion 49 (2009) 065003

### Conclusions

- 1. AEs degrade fast-ion confinement in many steady-state scenario discharges
- 2. Degradation of fast-ion confinement can account for the overall degradation in global confinement
- 3. Physical mechanism of fast-ion transport: critical gradient behavior due to many waveparticle resonances

### **Backup Slides**



### Implications for ITER

- ITER steady-state scenario is predicted to have unstable AEs
- Multiple modes with many resonances are likely → critical gradient fast-ion transport regime
- <u>Not</u> strongly driven past threshold
- Critical gradient calculation predicts modest effect

## High $\beta_N$ , high $q_{min}$ discharges with good fast-ion confinement are observed

