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Steady-state Advanced Tokamak (AT) scenarios 

often have elevated values of safety factor q  

1) Poli, NF 54 (2014) 

2) Garofalo, NF 54 (2014) 

3) Kessel, FED 80 (2006) 

J.M. Park, APS (2013) 

• Projections predict a stable 

βN=5 steady-state scenario 

in DIII-D with increased 

ECCD and off-axis NBI 



Ferron, PoP 20 (2013) 092504 

Many DIII-D discharges with qmin>2 have poor 

global confinement  

Is degraded fast-

ion confinement 

the culprit? 

qmin

(2.7 < N < 3.9,  4.5 < q95 < 6.8)
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Outline 

 

1. AEs degrade fast-ion confinement in many 

steady-state scenario discharges 

2. Degradation of fast-ion confinement can 

account for the overall degradation in global 

confinement 

3. Physical mechanism of fast-ion transport: 

critical gradient behavior due to many wave-

particle resonances 

4. Outlook 

 



Use TRANSP to quantify the degradation in fast-ion 

signals   

• Use spatially uniform 

ad hoc fast-ion 
diffusion Df in TRANSP 

as an empirical 

measure of 

degraded fast-ion 

confinement 

• Alternatively, use 

ratio of signal to 

“classical” 

prediction 

• Global confinement 

varies with fast-ion 

confinement  
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The qmin~2 discharge has more AEs and worse 

confinement than the qmin~1 discharge 



Many Alfvén Eigenmodes are Observed & Expected  
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qmin~1 data agree with  predicted fast-ion signals 

Ratio of signal to calculated predictions 
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qmin~1 data agree with predicted fast-ion signals but 

qmin~2 data do not 

Ratio of signal to calculated predictions 
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Assuming fast-ion diffusion of 1.3 m2/s gives approximate 

agreement with qmin~2 data 

Ratio of signal to calculated predictions 

 

                Classical                Classical    Df
 

Neutrons    89%                61%         91% 

Wf ast                      100%               72%        108% 

* 



Degraded fast-ion signals correlate with 

increasing Alfvén eigenmode activity  

• Every diagnostic that is 

sensitive to co-passing 

fast ions measures 

reductions 

• The “AE Amplitude” is 

the average 

amplitude of coherent 

modes in the TAE band 

(from interferometer 

signals) 

• Data from quasi-

stationary portion of 

steady-state scenario 

discharges 
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1. AEs degrade fast-ion confinement in steady-

state scenario discharges 

2. Degradation of fast-ion confinement can 

account for the overall degradation in global 

confinement 

3. Physical mechanism of fast-ion transport: 

critical gradient behavior due to many wave-

particle resonances 

4. Outlook 

 



• Compare two 

matched 

discharges: 

qmin ~ 1 &  

qmin ~ 2 
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• Compare 

power balance 

in qmin ~ 2 shot: 

Classical vs. 

Df=1.3 m2/s 

• Reduced fast-

ion stored 

energy 

• Less power 

delivered to 
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1. AEs degrade fast-ion confinement in many 

steady-state scenario discharges 

2. Degradation of fast-ion confinement can 

account for the overall degradation in global 

confinement 

3. Physical mechanism of fast-ion transport: 

critical gradient behavior due to many wave-

particle resonances 

4. Outlook 

 



Different combinations of on-axis & off-axis beams 

vary the fast-ion gradient that drives AEs 

On-axis injection 

Use L-mode plasma in 

current ramp: 

• Low AE threshold 

• Well diagnosed 
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As predicted by linear AE stability theory, a steeper 

gradient drives more AE activity  

• Growth rate from 

TAEFL gyrofluid 

code 

 

• GYRO gyrokinetic 

code gives similar 

results 
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Stronger AE activity causes a larger fast-ion deficit  

• The measured 

neutron rate 

approaches the 

classical 

prediction for off-

axis injection 
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The measured fast-ion profile is nearly the same for all 

angles of injection!  

• Suggests the fast-ion 

transport is “stiff” 

• The linear stability 

threshold acts 

(approximately) as a 

“critical gradient” 
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Of course, in quiet plasmas, the 
profiles differ. 
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A critical gradient model* reproduces the 

observed trend 
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*Ghantous, Phys. Pl. 19 (2012) 092511. 

Gorelenkov TH/P1-2 
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Recent Data Supports Critical Gradient Model of 

Alfven Eigenmode (AE) Induced Fast Ion Transport 

• Beam power scan varies AE 

amplitude 
 

• Modulated off-axis beam allows 

measurement of incremental fast-

ion flux 
 

• Local fast-ion density ceases to rise 

above certain input power/ AE 

amplitudes  

– SSNPA Neutral particle analyzer -> fast-

ion density localized in phase space 
 

 

AE Power (a.u.) 

SSNPA ~  Fast-ion Density 

PNBI-mod 



Above threshold, the modulated signal is strongly 

distorted by AE transport 

• Conditionally average the 

modulated signal 

• At low power, the signal agrees 
well with a classical model 

• Classically, the amplitude of the 

modulated signal should increase 

at high power 
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Infer the fast-ion transport from a continuity 

equation for the measured “density”  

 

• When the AEs are absent, the transport 
term is negligible  measure source in 

a low-power shot 

• With AEs, use the measured n to infer 

the divergence of the fast-ion flux 

• Linearize.  Obtain a continuity equation 

for 1st order (modulated) quantities 

Distribution Function 

Weight Function 

“Flux” 

• Define a “density” that incorporates the 

phase-space sensitivity W in its 

definition 



Divergence of fast-ion flux abruptly increases 
above an AE threshold  critical gradient behavior 
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Many small-amplitude resonances  “stiff” 

transport 

• Use 

constants-

of-motion to 

describe 

complex 

Energetic 

Particle 

orbits 
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Many small-amplitude resonances  “stiff” 

transport 

• Injected 

beams 

populate the 

co-passing & 

trapped 

portions of 

phase space 



Many small-amplitude resonances  “stiff” 

transport 

• Use measured 

modes to 

compute orbits 

that satisfy a 
resonance 

condition 

• Many 

resonances 
cause stochastic 

overlap in phase 

space* 

*White, PPCF 52 (2010) 045012 



The high qmin steady-state scenario plasmas also 

have many resonances 

qmin ~ 2 qmin ~ 1 

Resonance 

Deposition 
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1. AEs degrade fast-ion confinement in many 

steady-state scenario discharges 

2. Degradation of fast-ion confinement can 

account for the overall degradation in global 

confinement 

3. Physical mechanism of fast-ion transport: 

critical gradient behavior due to many wave-

particle resonances 

4. Outlook 



New strategies are needed to overcome 

critical gradient behavior  

 

 

Above AE stability threshold, additional 

on-axis beam power is ineffective 

• More off-axis beam power (broader beam profile)     
Nucl. Fusion 53 (2013) 093006 

• Better thermal confinement (less auxiliary power for 

same βN) PPC/P2-31, EX/P2-39 

• Replace beam-driven current with RF TH/P2-38 

• Modify AE stability  Nucl. Fusion 49 (2009) 065003 



Conclusions 

 

1. AEs degrade fast-ion confinement in many 

steady-state scenario discharges 

2. Degradation of fast-ion confinement can 

account for the overall degradation in global 

confinement 

3. Physical mechanism of fast-ion transport: 

critical gradient behavior due to many wave-

particle resonances 
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Implications for ITER 

• ITER steady-state scenario is predicted to have unstable AEs 

• Multiple modes with many resonances are likely  critical 

gradient fast-ion transport regime  

• Not strongly driven past threshold 

• Critical gradient calculation predicts modest effect  



High βN, high qmin discharges with good fast-ion 

confinement are observed  

Transport barrier 

near r=0.7 
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