

Review of the Safety Concept for Fusion Reactor Concepts and Transferability of the Nuclear Fission Regulation to Potential Fusion Power Plants

Joachim Herb¹, Jürgen Raeder², Arthur Weller², Robert Wolf³, Lorenzo Virgilio Boccaccini⁴, Dario Carloni⁴, Xue Zhou Jin⁴, Robert Stieglitz⁴, Christoph Pistner⁵

Overview

Achievement

Literature survey of the fusion safety concept, based on:

- Safety and Environmental Assessments of Fusion Power (SEAFP)
- Safety and Environmental Assessment of Fusion Power Long Term Programme (SEAL)
- Power Plant Conceptual Study (PPCS)
- Licensing documentation of the ITER project and ITER safety and licensing update

Exemplarily checked against German safety requirements for nuclear power plants

Current Status

Fusion safety concept based on the concept of defence in depth, necessary to guarantee the confinement of the radioactive inventory

Comparison of the Nuclear Fission Safety Concepts with the Fusion Safety Concept

Based on German safety requirements for NPPs ("Sicherheitsanforderungen an Kernkraftwerke", SiAnf)

Enveloping Event

A complete destruction of all confinements of a FPP could result in doses to the public in the order of 1 Sv (several orders of magnitude lower than those for equivalent hypothetical worst-case scenarios of NPPs)

Without safety concept radiation protection measures could be necessary outside of the FPP

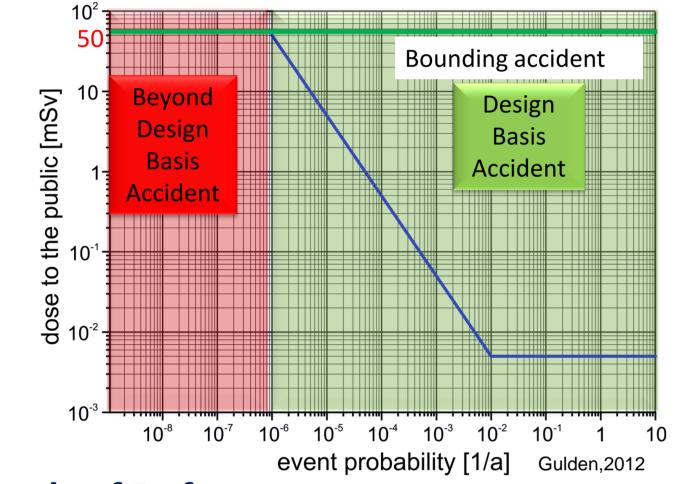
Comparison Fission/Fusion Safety Concepts

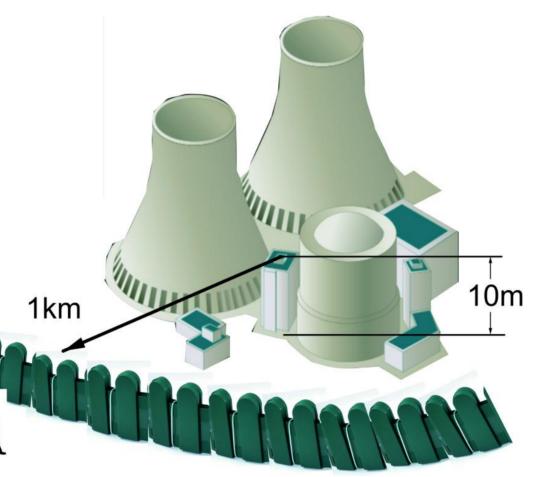
Reactivity Control, Fuel and Inventory

In principle, the (German) safety requirements for NPPs can be applied to FPPs. Specific differences between the implementations of the safety concept of FPPs and NPPs exists

Next Steps

Together with an increased level of detail of the plant designs of future FPPs


- a systematic assignment of measures and installations to the different levels of defence
- potential releases
- external events (e. g. earthquakes and flooding) and very rare man-made external hazards (crash of a large air plane)


have to be analysed in more detail

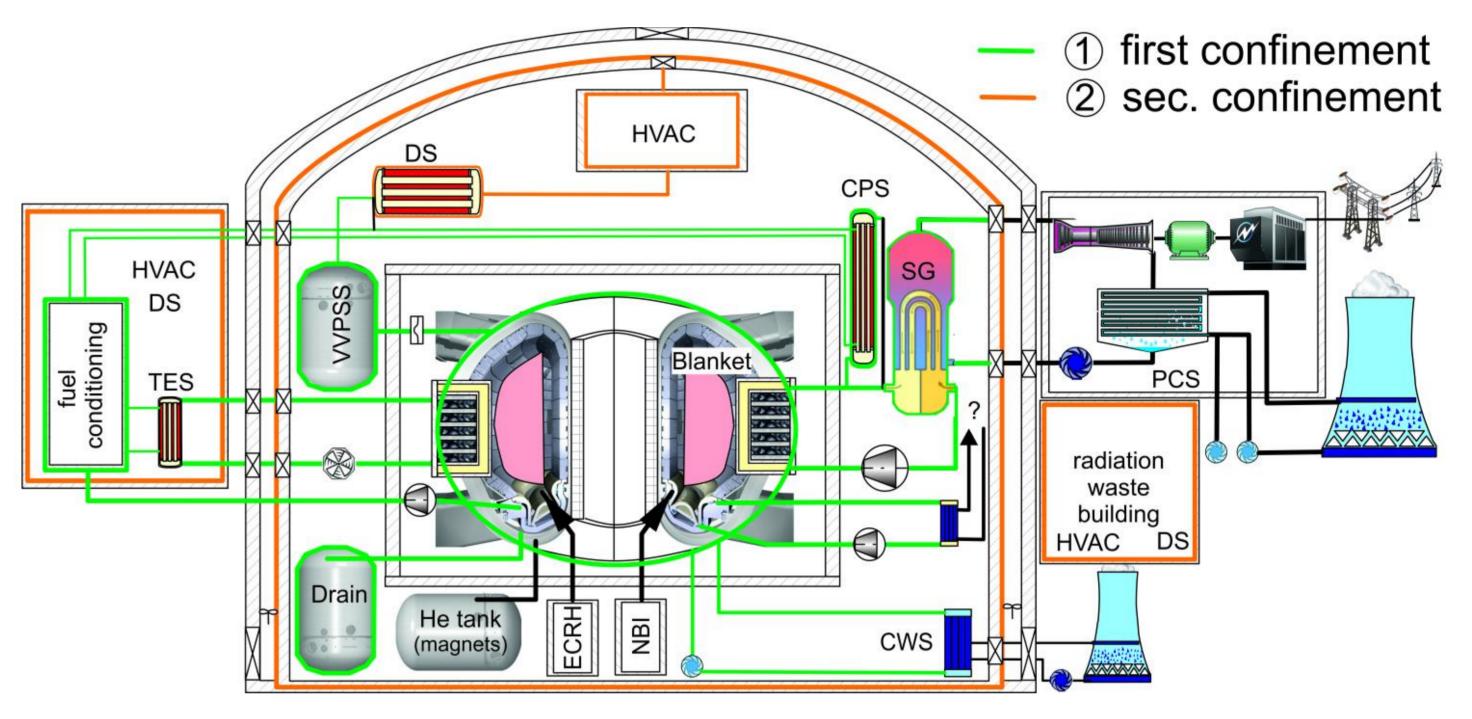
Fusion Safety Approach

Safety concept of fusion based on **five levels of defence** [INSAG-10]

Radiological Consequences versus Frequencies

NPP: Necessity to **control reactivity** and **prevent re-criticality**

FPP: **Excursions** of the reaction rate can be **excluded** due to **inherent features** of the design


x control of reactivity SiAnf applicable: shutdown of the facility under any circumstances

Barriers

NPP: Multiple barriers on several consecutive levels of defence

FPP: Inventories **not concentrated locally**, **active retention functions** like detritiation systems

SiAnf applicable: physical barriers and retention systems

Levels of Defence

LoD	Operational state	Objective	Means	Consequences dose limit
1	Normal operation	Prevention of abnormal operation and failures	Conservative design high quality in construction, operation	No measure
2	Anticipated operational occurrence $f > 10^{-2}/a$	Control of abnormal operation and detection of failures	Control, limiting and protection systems and surveillance features	Plant shall return to full power in short term (after fault rectification)
3	Design basis accident (DBA) $10^{-2}/a > f > 10^{-4}/a$	Control of accidents within design basis (unlikely events)	Engineered safety features and accident procedures	Plant shall return to full power after inspection, rectification & requalification 5mSv/event
4	Beyond design basis accident $10^{-4}/a > f > 10^{-6}/a$	Control of severe plant conditions incl. prevention of progression and mitigation of consequences	Complementary measures and accident management	Plant restart not required 50mSv/event
5	Post severe accidents $f < 10^{-6}/a$	Mitigation of radiological consequences (release of radioactive materials)	Off-site emergency response	Plant restart not required

Identification of Postulated Initiating Events

PIEs identified with different methods (e. g. Hazard and Operability, Master Logic Diagram, **Functional Failure Modes and Effects Analysis, FMEA**)

Similar as in NPPs, e.g.

loss of flow accidents

- Fusion specific events, e. g.
- Ioss of cryogenic system
- Ioss of offsite-power, station blackout
- leaks (VV, primary cooling system)
- arcing
- magnet system faults

Event Sequences of Incidents and Accidents, Consequences

Defence in Depth and Independence of Levels of Defence

NPP: Safety functions ensured by multiple installations related to different levels of defence FPP: General safety concept exists (based on the concept of levels of defence)

✓ assign the safety functions of a FPP to certain level(s) of defence, if SiAnf applicable: plant design will be available

Beyond Design Basis Accidents

NPP: Two levels of defence of the safety concept deal with selected multiple failure events and postulated core melt accidents

FPP: The current safety concept of FPPs covers in the **fourth level of defence** the control of severe conditions and in the fifth level the mitigation of radiological releases

SiAnf applicable: consider special accident sequences, accident phenomena, and the need for specific accident management measures

External Events and Very Rare Man-Made External Hazards

NPP: Safety analyses incorporate analyses of the impact of external events FPP: **ITER** safety analysis includes **external events**

to be covered in the safety concept of on-going DEMO SiAnf applicable:

First of Its Kind

NPP: Proven technologies, qualified materials, validated calculation methods for the safety demonstration based on operational experience FPP: Minor operational experience is available

x evaluation of the operation experience SiAnf applicable:

Cooling

NPP: decay heat has to be removed to avoid fuel element damage and break of barriers FPP: decay heat of in-vessel components at EOC (blanket, divertor, etc.)

PPCS: (overall early MEI doses): about 1.7 µSv for DBA, about 0.16 mSv (model A), 0.4 mSv (model B and AB) for BDBA, 1.16 mSv (model A) and 18 mSv (model B) for the 'bounding accidents'

ITER: (overall early MEI doses): less than 10 µSv for DBAs, 1.1 mSv for BDBAs

Precautionary, Preventive and Mitigative Measures

Primary safety functions

- confinement of radioactivity
- control of operational release
- limitation of accidental release

Secondary safety functions

- Terminate nuclear reactions
- Ensure decay heat removal
- Controlled chemical, magnetic, and thermal discharge
- Limitations of release to ambient

Confinement systems depend on the coolant selected for the in-vessel components and are based on different structural barriers and active systems

SiAnf applicable: means for decay heat removal required

Leak Before Break

NPP: guaranteed the **component integrity** by applying the "leak-before-break concept" FPP: LBB concept cannot be assessed currently

SiAnf applicable: depending on coolant and plant design

Acknowledgements

This work has been funded by the Federal German Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) within the frame of the project 3611R01353.

References

As given in the accompanying paper SEE/P5-12

¹Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Boltzmannstraße 14, 85748 Garching, Germany, Joachim. Herb@grs.de ²Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching, Germany

³Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, 17491 Greifswald, Germany

⁴Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

⁵Öko-Institut e.V. (Institute for Applied Ecology), Rheinstraße 95, 64295 Darmstadt, Germany

