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ELM control'with- SMBI and pellet injection
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Mitigated ELMs ELMs
- KSTAR (Type-1) and HL-2A(Type-Ill) (Xiao et. al. - JET (type-l) (Lang et. al. 2011) experiments
2014) experiments demonstrated that SMBI can demonstrated that pellet injection can trigger
mitigate ELM — reduction of H, amplitude and ELM

increase of ELM frequency.
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Why sandpile model?

» ELM mitigation simulation is still beyond the scope of first principle code up to now.

» We need simplicity, so as to derive understanding.

» Sandpile is minimal model for ELM phenomena.

Turbulent transport in toroidal plasmas

Localized fluctuation (eddy)
Local turbulence mechanism:
Critical gradient range for micro-turbulence
Moderate local eddy-induced transport

Diamagnetic electric field shear suppression of turbulence

Critical gradient for MHD event
Strong MHD-induced transport

Total energy/particle content
Heating noise/background fluctuations
Energy/particle flux
Mean temperature/density profiles

Transport event
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Analogies between the sandpile
transport model and a turbulent
transport model

Sandpile model

Grid site (cell)
Automata rules:
Unstable slope range
Fixed number of grains moved if unstable
Steep slope stable range
Hard limit (VP : ballooning)
Topple as many grains as needed to relax slope to stable state
Total number of grains (total mass)
Random input of grains/Fueling
Sand flux
Average slope of sandpile

Avalanche
Ref. Newman et al. 1996, Gruzinov et al. 2003
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Sandpile model

 Sand Pile Model for ELMy H mode

All that is necessary to capture essentials of

» Bi-stable cellular automaton rule (Gruzinov 2002) | L—H transition and ELM dynamics is diffusive

: i-stabl ile +h limi ient.
» Simplest model for tokamak plasma transport bi-stable sand pile + hard upper limit on gradient

hard limit
» Yet retaining key physics e.g. L—H transition, ste‘;p slope stable range 3“0' 129
: : 25122
hysteresis, ELM etc. (Gruzinov 2003, Sanchez 2004) _5 e
- stable
turbulence exciting H
Additional 81‘_2'3 é = =
grain injection I stable — = ==
Sand grains il = 2422 = = »EE
o/ |y g Elind=E
o saindi=s £l EUEE
| I ! : :
%] (micro-turbulence, flipping) (stable by ExB shear flow) (MHD event, toppling)
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SANDPILE "'
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Detailed rules (Rhee et al. 2012)

Two stable regimes
» Stable slope (Z, < 8)

» Steep gradient stable slope (20 < Z, < 30) = “diamagnetic electric field shear suppression of

turbulence”

Two unstable regimes (transport)
» Unstable slope (8 < Z, < 20): Flippling of D, number of grains to downhill = “micro-turbulence”

» Hard limit (30 < Z): Toppling of 1+(Z,-8)/2 to downhill = “Ballooning limit (VP)”

Baseline diffusion

» Diffusion flux: Dy(Z,, - Z) = “Neoclassical transport”

Grain injection

» Ny, number of grains are randomly scattered in the sand pile = “Deposition”
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W/O Inj.

Time step
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What we learned from former work
> AGI simulating SMBI trigger frequent toppling events
> It prevents toppling avalanche, i.e. type-ll ELMs.
» Induced density deformation fragments large sized
toppling avalanche.
» AGI reduces the slope profile of pedestal and makes
cavity at the injection position without pedestal top

position change
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Why additional rule?

» The existing sandpile rule has the flipping to mimic
ballooning instabilities driven by VP.

» Therefore, ELMs appearing in the sandpile model can
be interpreted as type-II.

» However, we need to include the peeling instabilities

for the study of broader H-mode experiments.

Requirement
» The peeling instabilities are driven by the total current
flowing in the pedestal and have global features. The
total current mostly comes from the bootstrap fraction,
which is proportional to the pressure gradient.
» Therefore, we can approximate the total current in the
pedestal as the integral of the pressure gradient

.top r1dP

. . _ ar o top
across the region. i.e. jpq ~ ¢ | —dr ~ch; .

®) Strong shaping

Peeling
unstable

Ballooning
Weak shaping unstable

Stable

Snyder et al., 2007 NF

p,pcd
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Transport rule for peeling
>

>

Measure the averaged pedestal top height H;‘;Z during
assigned time AT.

Time averaging is analogy of bootstrap current recovering
time

Check whether Hy2%% > HP*?_If so, remove sands globally
(i.e. across the whole pedestal) to satisfy total grains

Hfoepd < HP*? while keeping the local gradients.

ped

top during inter-"ELM” periods.

We can calculate mean H

top

H
Then, we can tune 4H, to match the ratiofH},”jf dx AH./H
ped

(i.e. stored energy in the pedestal) from the sand-pile
modeling.

We set H?*¢ = 2100, which is pedestal top height of
Np = 15 case
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Np =12 (3NL n)s AH¢ = 120 (10% of pedestal grams)
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Phase-I
K > Ballooning free at the edge

20 » Total number of grains increase
rapidly
40
i Phase-ll

» Ballooning type MHD events are
governing this phase.

» Local transport events form
transport avalanches spanning
whole pedestal

» Outward flux during avalanche is
Iy = 15 w/ ballooning which is
larger than fueling =» Total grains
decrease.

» Total grains increase between
ballooning events = Time
averaged total grain increase

F
B

: Micro-turbulence
Green : MHD (VP)

White : Stable

Red : Turbulence suppression
Blue : Global transport

N total{x10000)
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|
|
|
|
10,9 : slowly.
10.0 I
! Phase-ll
9.9 I » Peeling type Global MHD events
5 < : : : : : ' occur 2~3times in a short time.
0.0} | Phase-l |'1 20 Phase-l| 4.0 I 6.0 » Pedestal top move to inward.
Step(}ﬂ C'OO) ™ Phase-lll
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Time evolution:of ELM cycle
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Gradient and Height Evolution

during ELM cycles

Z> (vP)

- Right before ELM, pedestal top approach to the AH{°P. - ELM cycle makes big circle bounded by H?* and
- Global transport reduce pedestal top height w/small Z’L’,ed
reduction of pedestal slope.
- Recovering of pedestal bottom slope, pedestal
extends to the core

- At first path meet < z2°* > limit and H,%, increases

and hit the limit.
- Peeling-ballooning limit triggers large type-I ELMs
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Parameter scan: Fueling rate and AH,
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» ELM frequency increases with increasing fueling rate (a characteristic feature of type—I ELM)

» ELM sizeis not related with the fueling rate

» AH¢ increases ELM size but reduce the ELM frequency.

» ELMsizeis correlated with the size of circle in the phase diagram
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HL-2A SMBI Experiment
. SMBI pulse duration (Xiao et al.)
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Pellet Injection
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Baylor et al 2008 EPS

>

Neutral particle deposition duration=> additional grains injection duration
Tdep ~ AT

Additional Grain Injection

: . Time step : o
- An is the number of additionally injected grains during unit time step.
At = 1<AT =20= fsgp< Tzlngl = 4OO<TELM
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Pedestal bottom injection
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Type-l ELMs are replaced by type-Il or type-lll (i.e. ballooning events) ELMs during SMBI
SMBI trigger pressure limit event spanning whole pedestal = drive strong transport, which

prevent pedestal from reaching global peeling limit
This mechanism is the same with the ELM mitigation by SMBI in the cases w/o peeling (T.Rhee

PoP2012)
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Change by AGI
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» Slope in SMBI deposition range, L=90~100, is increased by SMBI but inner range is
reduced compared to w/o SMBI and peeling case.

» Pedestal top height slightly decrease compared to w/o peeling and SMBI = SMBI

prevents H:,‘Z; hitting H2*

» But average pedestal top height increase compared to w/o SMBI and w/ peeling case
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Avalanche size distribution change by SMBI
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Pedestal bottom injection is most
efficient for preventing ELM
occurrence (L. = 95 case).

For the cases of inner injections,
An increase raises ELM
occurrences.

Larger injection at the pedestal top
enhance ELM occurrence: it works

as fueling.

ELM events w/o SMBI
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AGI interval = 200
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An
<Nped>

Pl of ~ 53%is injected to

the pedestal top centered at 20
with interval 200 ~ 0.07tgy
Most pellet injections trigger
type-l ELMs.

Most triggered ELMs have
similar ejection flux

Some PI’s fail to trigger type-I
ELM

After large ELMs, PI's tend to
increases pedestal pressure
acting like fueling = they lead to
even bigger type-l ELMs in later

times.



Phase diagram of gradient and height for triggered and not-

triggered
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Parameter scan:

Injection position; pellet size, injection interval
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Conclusion

1. Type-l ELMis reproduced in the sandpile model
» Transport (i.e. global transport) by current limit is added to sandpile model for type-lIl ELMy H mode.

» Type-l ELM evolution path of pedestal slope and height(current) makes a circle bounded by ballooning

and peeling limit and triggered near its crossing point

2. SMBIs deposited shallow drive type-I ELM mitigation

» Large ELMs are replaced by frequent smaller ones of type-ll (i.e. large toppling avalanches)

> SMBIreduce the H;‘Z; height = peeling-ballooning limit free.

An

» Optimized position is pedestal bottom and size is ~ 1% /step

» Large sized SMBI deposition distributed near pedestal forces peeling limit event = working like pellet

pacing

3. Pellet injection near pedestal top trigger current limit event.
1. ELMdynamics triggered Pl is resemble to that of type-I but smaller.

An

2. Effective Pl parameter is pedestal top injection and size of ~ 60% /step

ped
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Clarification experiments

1. Pellet Injection control 2. Synchronized pressure and current
> Broad, dense, and pedestal top profile measurement to PI/SMBI
> Narrow, loose, and pedestal gradient limit not current limit.
bottom deposition = work like » On the contrary, pellet pacing hit the
SMBI current limit not pressure gradient limit.
o 2000 ————" 2200
o — L=95
£ — 25 - TS
o 150 1 ELM mitigation by
v - Pedestal ] 20007 SMBI
5 100 T -7 ¥
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