Expanding the Physics Basis of the Baseline Q=10 Scenario Toward ITER Conditions

^{by} T.C. Luce

with

C. Paz-Soldan, T.W. Petrie, W.M. Solomon, F. Turco, N. Commaux, A.M. Garofalo, J.M. Hanson, G.L. Jackson, R.I. Pinsker, L. Zeng

Presented at the 25th IAEA Fusion Energy Conference Saint Petersburg, Russia

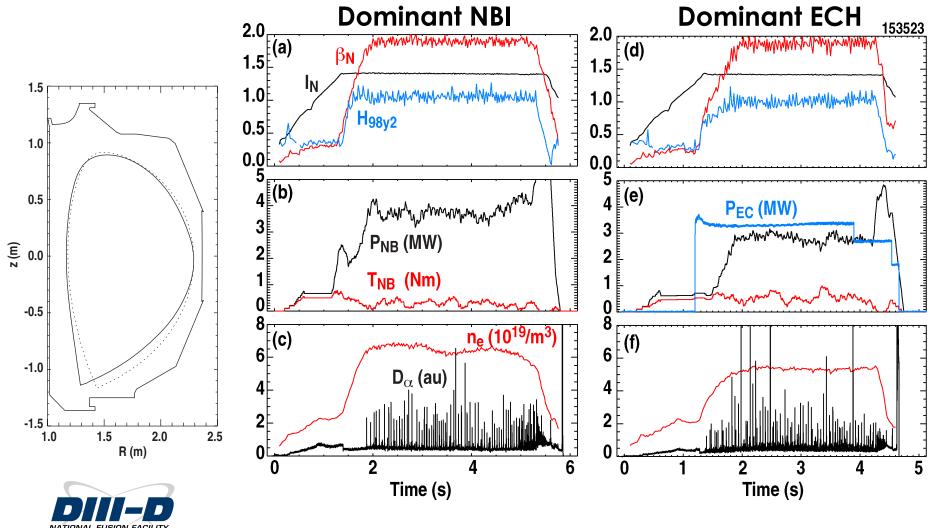
October 13–18, 2014

Introduction

Physics basis for the ITER baseline scenario is dominated by plasmas with co-NB injection, which implies:

- Dominant ion heating
- Significant torque
- Significant core fueling

Stationary plasmas have been obtained in DIII-D with normalized performance sufficient for Q=10 in ITER ($\beta_N \ge 1.8$, $H_{98y2} \ge 1$, $q_{95} \approx 3$) for longer than 2 τ_R with normalized source conditions similar to ITER:


- Electron dominant heating (ECH+NB): P_{electron}/P_{ion} = 3 (ITER: 3)
- Low applied torque (0.5 Nm): $(T_{NB} / M) \tau_E \omega_* = 5 \times 10^4$ (ITER: 9×10^4)
- Reduced core fueling (2.2 10^{20} el/s): $S_{NB}\tau_E / nV = 6x10^{-2}$ (ITER: $6x10^{-3}$)

Radiative divertor operation will likely be needed to mitigate heat loads to the divertor (stationary and transient)

Stationary Conditions Similar to ITER Q=10 Requirements Obtained at Low Torque

• ITER shape closely reproduced (including aspect ratio)

Primary results:

- ITER Q=10 conditions reached in stationary plasmas with low torque and dominant electron heating at q₉₅ ≈ 3
- Radiative divertor with neon has ~80% input power radiated
- Plasmas more likely to be unstable to m=2/n=1 tearing mode at low torque
- Confinement is reduced relative to co-NBI cases, but H_{98v2} ≈ 1
 - Reduction in τ_E with electron heating (up to 50%), low torque (up to 50%), or radiative divertor (more than 10%)

Primary conclusions:

- Tearing stability may set the limit on ITER performance at low q_{95} with low absolute and differential rotation
- Rotation and T_e/T_i have significant impact on confinement

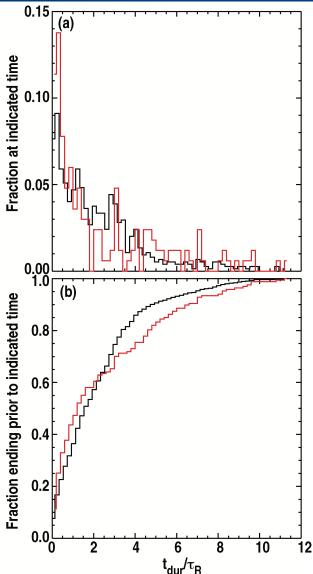
Open Questions

- Is stable stationary operation in the ITER baseline scenario possible with zero torque input?
 - Need to understand the variation in stability with torque—how much is DIII-D tool/machine specific?
 - Variety of paths to instability suggests there is no 'magic bullet' to ensure stability unless underlying common mechanism found
 - Experiments probing stability at zero torque as a function of q_{95} at fixed B and β (not β_N) may be needed to optimize fusion performance
- Is the confinement reduction seen with reduced torque and dominant electron heating included in ITER projections?
 - Need to compare with theory-based modeling to see if effects are explained by the models

Motivates DIII-D ECH power upgrade to demonstrate ITER baseline scenario with no torque and no core fueling

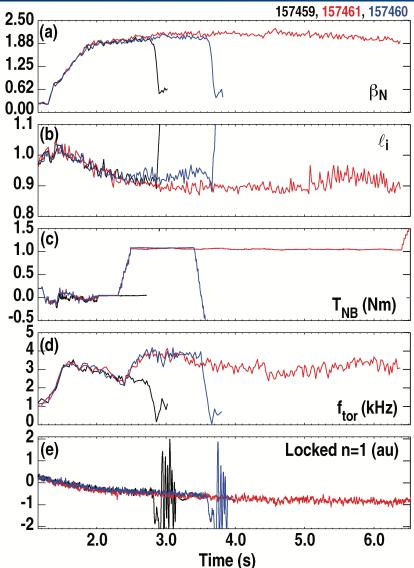
Stability

Low Torque Plasmas More Frequently Unstable to Tearing Modes


Two phases to stability question:

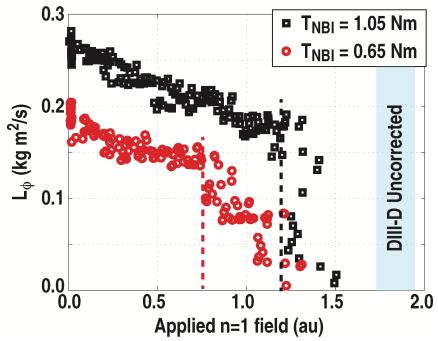
- Stability of resistive equilibrium (t_{dur} > 2τ_R)
 10-20% unstable in this phase
 - Access to resistive equilibrium ($t_{dur} < 2\tau_R$)
 - Low torque (<1 Nm) cases 50% more likely to be unstable
- Caution: Frequency ≠ Probability!

Hypotheses to explain why operation at low torque is more difficult:

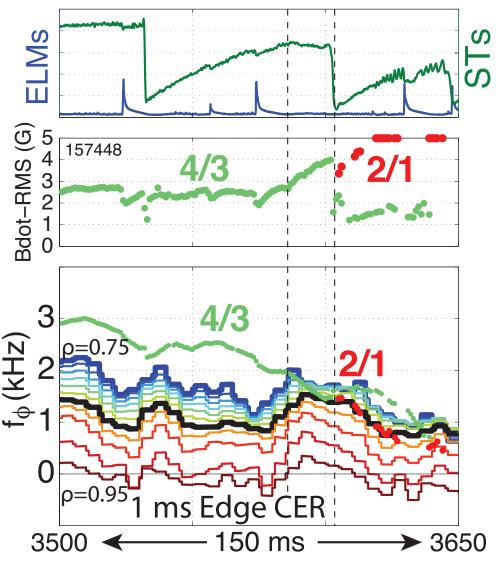

- Uncorrected non-axisymmetric fields
- Loss of differential rotation between rational q surfaces
- Change of current profile

Stable Operation Can Be Extended By Adding Torque

- Near-zero torque startup gives reproducible access
- Rotation decay at fixed torque was typical
- Addition of 1 Nm torque step extends stable operation phase why?
 - Increased lab frame rotation?
 - Maintains differential rotation?
 - Pedestal current density change?
 - Parallel conductivity/current drive change?
- Torque step-down leads to rapid instability

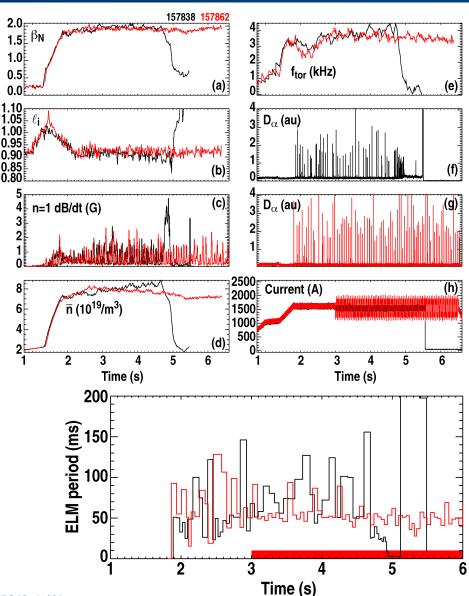


Sensitivity to Non-Axisymmetric Fields and Optimal Correction Determined Empirically


- DIII-D has a significant non-axisymmetric magnetic field due to construction imperfections
 - Of concern here is *n*=1 component
- Optimal correction determined from feedback to null the plasma response at n=1
- Sensitivity to uncorrected n=1 determined by intentional detuning around optimum
 - Optimum verified by phase independence
 - Required optimization measured by rotation response vs amplitude of detuning
- Is stable operation with zero torque possible even with optimized compensation?

Loss of Differential Rotation Between Rational q Surfaces May Reduce Stability Margin

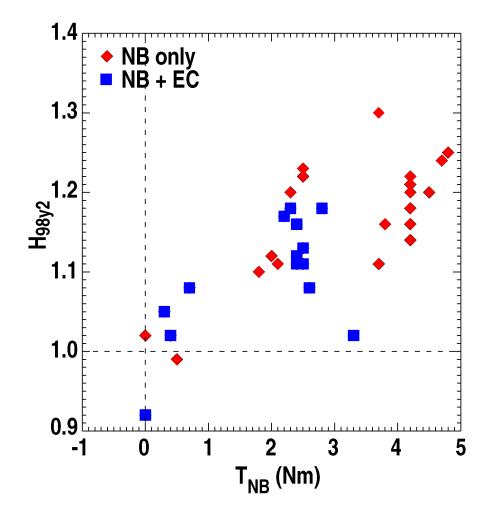
- Differential rotation is expected to enhance MHD stability
 - Isolation by conductivity screening
 - Sideband reduction by viscous damping
- Loss of differential rotation often observed prior to n=1 instability
- Sawtooth precursor is even m
 - Need radially resolved measurements of the tearing mode perturbation
 - Frequency mapping is clearly not applicable



Irregular ELMs Often Precede Instability

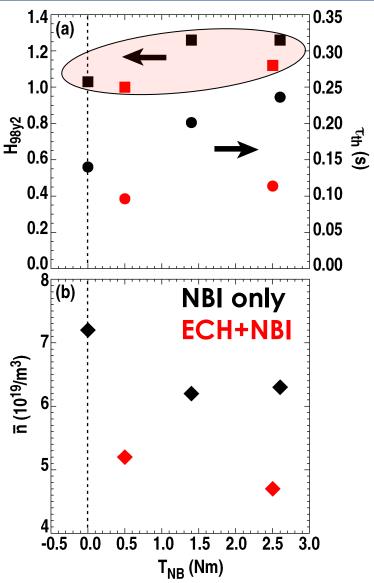
- Otherwise stationary plasmas can exhibit significant variability in ELM period
 - Rise in density and drop in l_i suggests pedestal bootstrap current is changing
- Application of oscillating n=1 perturbations locks the ELM period to the applied frequency
 - Perturbation at 0.5 and 1 Nm is within the measured tolerable n=1 without rotation collapse
 - No working solution found at near-zero torque

ELMs during ECH exhibit different behavior



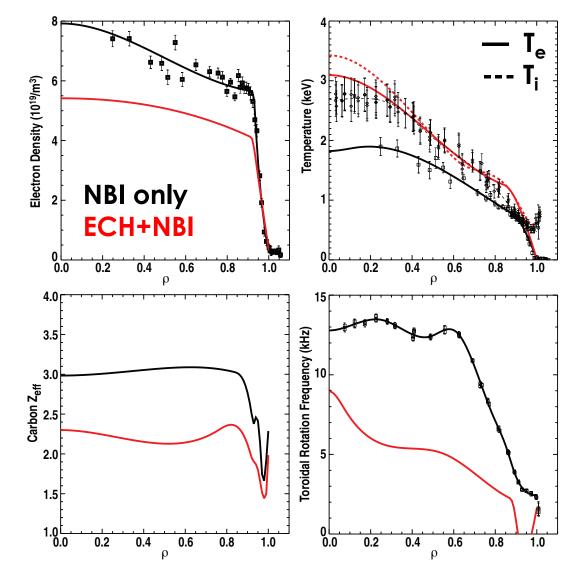
Confinement

Normalized Confinement Strongly Increases with Applied Torque

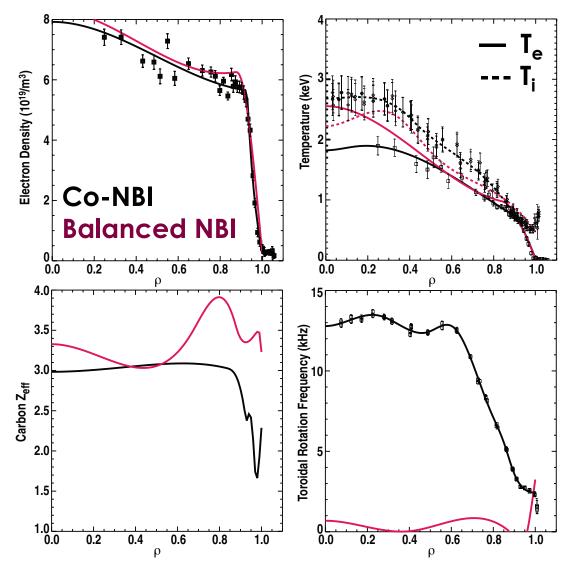

- Applied torque varied by two means:
 - Mixture of co- and ctr-NBI
 - Addition of ECH
- H_{98y2} varies by about 20% as torque varies from near zero to pure co-NBI
- H_{98y2} roughly the same with pure NBI or ECH+NBI at equal torque

Confinement Time Drops Significantly with Electron Heating or Low Torque

- Strong power degradation in IPB98y,2 ($\tau_{th} \propto P^{-0.69}$) hides large variations in τ_{th} with torque and ECH
 - Density dependence also mitigates some of the change with ECH
- Since $H_{98y2} \ge 1$, projections to ITER with low torque and ECH still yield $Q \ge 10$
 - Remember that fusion gain for a specified fusion power depends on τ_{th} , not H
 - Need to see if 1-D models reproduce these results and the IPB98y,2 scaling

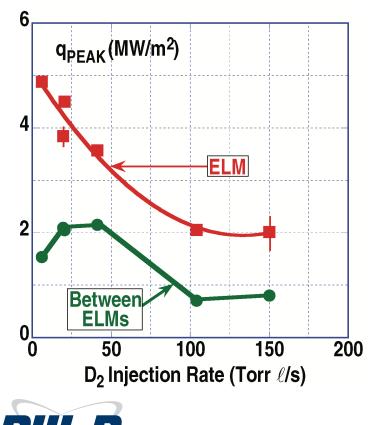


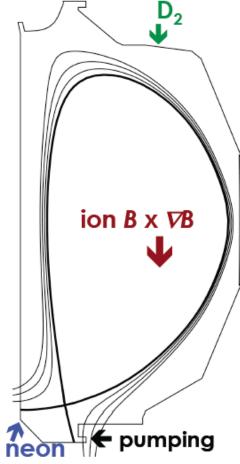
Transport of Particles, Momentum, and Energy Change Dramatically with Addition of ECH


- Density gradient does not change much, but pedestal is reduced
 - Pedestal width unchanged
- Temperature increases, pedestal is higher and wider
 - $T_e \approx T_i$
- Rotation is reduced despite the removal of the m=3/n=2 tearing mode
- Z_{eff} is reduced

Only Rotation is Strongly Affected With Low Torque NBI

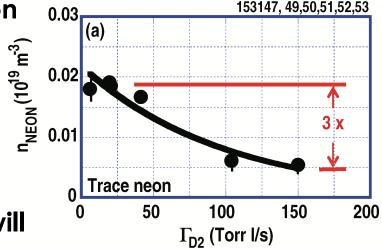
- Density does not change
- Electron and ion temperature closer
- Rotation is strongly reduced as expected
- Z_{eff} may be higher

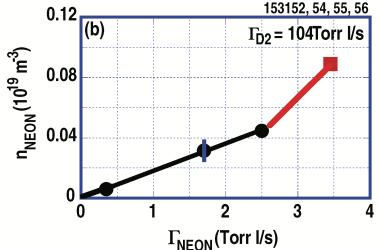



Radiative Divertor

Radiative Divertor Mitigates Steady and Transient Heat Flux to the Divertor

- Radiation from inside and outside the plasma boundary is likely necessary to protect the ITER divertor
- 'Puff and pump' technique has demonstrated ~60% reduction in the between-ELM and ELM heat flux to the outer divertor

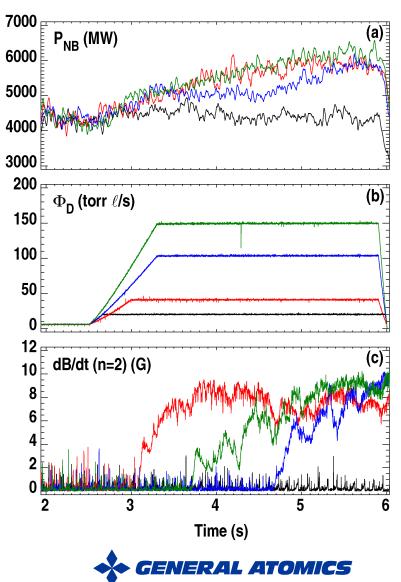




Combination of Deuterium and Neon Gives Radiative Fraction of ~80%

- Deuterium gives mostly divertor radiation
- Addition of neon increases radiative fraction and core radiation
- Deuterium flow necessary to minimize fuel dilution
 - Neon contribution is $\Delta Z_{eff} = 0.55$
- Choice of impurity for other tokamaks will depend on pedestal temperature

Г _{NEON} († I/s)	0.35	2.50
$- \mathbf{P}_{R,SOL+DIV}/\mathbf{P}_{IN}$	0.58	0.64
$- P_{R,CORE}/P_{IN}$	0.10	0.15
$P_{R,TOT}/P_{IN}$	0.68	0.79
r _{r,tot} /r _{in}	0.68	0.77



Confinement Reduction During Radiative Divertor Operation Is Modest

- Energy confinement reduced by ~25% with strong deuterium flow
 - Part of the reduction is due to an m=3/n=2 tearing mode
 - Correlates stability with pedestal behavior
- ELM heat flux is mitigated in part by more rapid ELMs
 - Implies a reduced pedestal height and reduced confinement
- Radiative divertor operation should be applied only as necessary
 - Costs in performance from dilution and confinement reduction

