EX/9-1 Progress in Preparing Scenarios for ITER Operation

George Sips (JET-EFDA, UK) G. Giruzzi, S. Ide, C. Kessel, T. Luce, J. Snipes, J. Stober

For the IOS-TG of the ITPA

FEC 2014, St Petersburg, Russia 17 October 2014

The **Integrated Operation Scenarios** Topical Group of the ITPA has coordinated experiments and simulations

1. Joint experiments, demonstrating ITER scenarios

- Plasma formation
- Ramp-up to 15MA and ramp-down
- Scenarios for operation at high Q~10

2. ITER scenario modelling using several codes

- Non-active operation in ITER
- Benchmarking scenario codes (using the hybrid scenario)
- Scenario exploration (steady state scenarios)

Conclusions

Joint Experiments: Plasma formation

AUG: ECH, X2

Numbers are segments of AUG

ITER:

Electric field:

ECH assist: (Up to 8MW) ≤ 0.35V/m

O1 at 5.3T, X2 at 2.65T toroidal launch

Experiments:

- Low E_{loop} tested (~0.2V/m)
- Robust plasma breakdown in devices with metal walls.
- ECH for pre-ionisation and burn-through assist.

J. Stober et al, Nucl. Fusion 51 (2011) 083031

EX/9-1: Progress in Preparing Scenarios for ITER Operation

Experiments using an inclined EC launch angle at plasma formation to mimic the conditions in ITER.

To do: Assess EC stray radiation in an "empty torus" in ITER

Experiments: Ramp-up phase

A.C.C. Sips et al, Nucl. Fusion 49 (2009) 085015

For the ramp-up

- ITER ramp up to 15MA:
 - ℓ_i < 1: Vertical position control
 - ℓ_i > 0.65: PF force limits
- Early X-point formation
- Heating to control ℓ_i and reduce the flux consumption.
- A range of plasma inductance (l_i(3)) can be obtained from 1.0 to 0.65 (H-mode).

To do: What is the fastest stable ramp-up ? (reserving maximum flux for flat top burn)

IOS-TG china eu india japan korea russia usa

Experiments: Ramp-down phase

For the ramp-down

- For the rampdown, the plasma should stay diverted and maintain H-mode to maintain vertical stability.
- Density decay ~ I_p
- For (ohmic) rampdown a reduction of the elongation from 1.85 to 1.4 would minimise the increase in plasma inductance to 1.3-1.4.

To do:

Plasma termination scenarios following off-normal events

C.E. Kessel et al, Nucl Fusion 53 (2013) 093021

EX/9-1: Progress in Preparing Scenarios for ITER Operation

Joint experiments on demonstrating operation with scaled parameters for the ITER baseline scenario at q_{95} ~3

- AUG
- C-Mod
- DIII-D
- JET

G.L. Jackson et al, Proc. 24th FEC, San Diego, USA (2012) EX/P2-08

EX/9-1: Progress in Preparing Scenarios for ITER Operation

7/17 FEC 2014, 17 Oct. 2014

Experiments: Scenarios for Q~10

Joint experiments on demonstrating operation with scaled parameters for the ITER baseline scenario at q₉₅~3

- AUG (W wall)
- C-Mod
- DIII-D

 $\beta_N \sim 2$ to maintain high enough f_{ELM}

J. Schweinzer, this conference, EX/9-4

EFD

IOS-TG

H-modes at q₉₅~3:

- Most experiments obtain H₉₈(y,2)~1.0 only for β_N=2.0-2.2.
 Also, at β_N~2, more stable ELMy discharges
 - ✓ ELM mitigation in ITER baseline discharges is difficult.
- However, with a metal wall in AUG and JET (and C-Mod) the confinement in baseline scenarios is lower: H₉₈(y,2)~0.85-0.9.

✓ JET has made progress in demonstrating H₉₈(y,2)~1

I. Nunes, this conference, EX/9-2

To do:

- Experiments with dominant electron heating (in progress)
- Transient and stationary heat flux handling (ELMs & seeding)
- Simulate entry to burn and burn control

Experiments: Scenarios for Q~10

IOS-TG

Operation at higher beta,

 β_N >2.4, with H₉₈(y,2) significantly above 1

 \rightarrow Q>10 at 15 MA or Q~10 at reduced plasma current of 11MA.

To do:

Integrate high power scenarios with divertor solution (seeding).

T.C. Luce et al, Nucl. Fusion 54 (2014) 013015

IOS-TG

T. Casper et al, Proc. 24th FEC, San Diego, USA (2012) ITR/P1-15

For hydrogen and helium:

Complete scenario simulations with CORSICA and JINTRAC at high input power (>50MW).

At 2.65T:

- In helium, H-mode operation may be possible for ≥ 35MW.
- In hydrogen, H-mode operation is expected to be marginal, even with 60 MW of input power.

At 5.3T:

L-mode for both helium and hydrogen, with flat top duration at 15MA of 20-50s.

ITER scenario simulations at 7.5MA/2.65T

	Hydrogen	Helium				
Padd	53 – 63MW	63MW				
P _{LH} at 0.85% n _{GW}	54MW 27 – 38M					
Min-n _e for H-NBI	4.5x10 ¹⁹ m ⁻³	2.5x10 ¹⁹ m ⁻³				
Fuelling	gas + pellets	gas only				
CORSICA & JINTRAC						
Plasma regime	L-mode/type III H-mode H-mode					
Flat top length	200-500s	200-2000s				

Key issues:

- $L \rightarrow H$ mode threshold
- Fuelling of helium plasmas
- High minimum density limit for use of NBI in hydrogen
- The PF coil set in ITER has large margins for operation at 7.5MA

To do: Joint Experiments to provide data to benchmark codes

Using parameters for the ITER hybrid scenario at 12MA/5.3T:

- Same heating schemes (NBI and ICRH) to test codes
- Assume pedestal ($T_e = 5 \text{ keV}$) and fixed density profile
- GLF23 transport model
- → Test scenario codes, developed by different groups.

For a hybrid scenario at 12 MA, using 30MW NBI and 20MW ICRH.

	ONETWO	TOPICS	TSC/TRANSP	CRONOS	ASTRA
I _{BS} (MA)	3.87	3.83	3.39	4.26	2.89
I _{NB} (MA)	2.07	2.26	1.42	0.92	1.91
f _{NI}	0.50	0.51	0.40	0.43	0.40
Q	6.5	7.7	7.5	8.3	7.9
β _N	2.1	2.38	2.18	2.3	2.07
H _{98(y,2)}	1.1	1.07	1.18	1.23	1.2

C.E. Kessel et al, Nucl. Fusion 47 (2007) 1274

→ Extensive benchmark studies for heating and current drive codes have been performed: EC, NBI, ICRH and LHCD

To do: Include particle transport, tungsten (W) for ITER baseline

IOS-TG

Simulations: Steady state scenario exploration at 7-9 MA in ITER

Steady state scenarios require high bootstrap current fraction (50-65% at $\beta_N \sim 2.6-2.8$) and high confinement (H₉₈(y,2)=1.5-1.7)

- 1. High T_{ped}, no Internal Transport Barrier (ITB)
- At T_{ped} ~ 7 keV, several codes predict Q = 3.3 3.8 using day-1 heating systems in ITER.

2. Low T_{ped} , with ITB

- Simulations using T_{ped} ~ 3 keV with ECCD at mid-radius
- But require additional 20 MW offaxis current drive (ECCD or LHCD)
- Q = 5 6.5, although ITB depends on fine details within the code.

To do: Obtain consistent simulations.

Over the past few years, the IOS-TG of the ITPA has:

- Validated the breakdown scenario for ITER, using inclined ECH
- Tested solutions for the current ramp-up and ramp-down phase
- Demonstrated ITER baseline experiments at H₉₈(y,2)=1 at β_N~2, or higher confinement at β_N>2
- Benchmarked sophisticated scenario codes, giving comparable results for the ITER hybrid scenario at 12MA. In addition, benchmarked heating and current drive code modules
- Continued to explore steady state scenarios. However, obtaining both consistent simulations and Q~5 in ITER is challenging

Several issues remain \rightarrow future "joint" work:

- ✓ Assess EC stray radiation in an "empty torus" in ITER
- ✓ Plasma ramp-down following off-normal events (Joint experiments)
- ✓ Baseline scenario (Joint experiments and modelling):
 - Experiments with dominant electron heating
 - Transient and stationary heat flux handling
 - Simulate entry to burn and burn control
 - Include particle transport, & tungsten (W) in simulations
- ✓ Joint Experiments to provide data to benchmark codes for helium and hydrogen scenario simulations (→ next ITPA meetings)
- ✓ Obtain consistent simulations for steady state scenario simulations