

Trend Analysis of CENDL-3.2 Criticality Benchmark Test Results Based on Reaction Channel Sensitivity

——Al and Cr

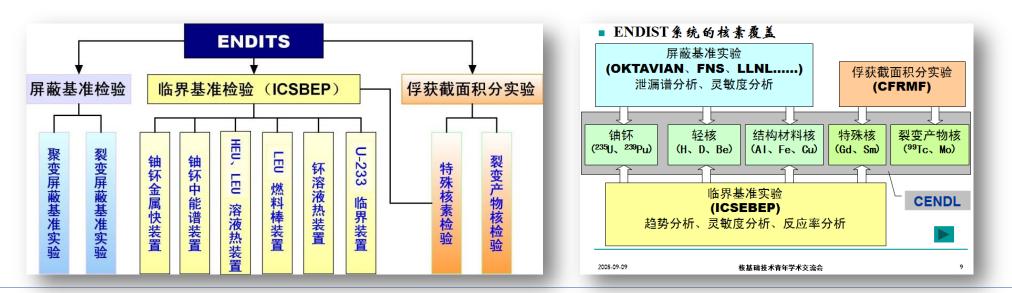
WU Haicheng¹, MA Yanhu¹, ZHANG Huanyu¹

1 China Nuclear Data Center, CIAE

CONTENTS

- 01 Introduction
- Methodology of trend analysis based on reaction channel sensitivity
- 03 Trend analysis results for Al and Cr
- 04 Summary

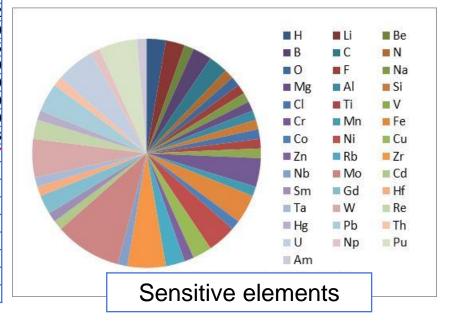
01


Introduction

点击此处添加副标题文本内容

1 Introduction

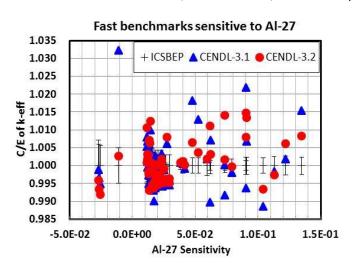
- ☐ The concept of systematic integral validation for evaluated nuclear data library
 - Different types of benchmark experiments can be utilized to achieve nuclide coverage and energy spectrum coverage for the integral validation of evaluated nuclear data libraries.
 - During analysis, different criticality benchmarks are correlated with the characteristic parameters of the experiments.

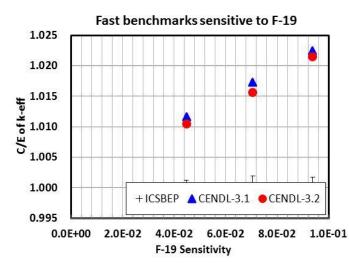

1 Introduction

□ ENDITS-2.1 was developed in 2020, which includes 2,237 criticality benchmarks from the ICSBEP.

Fuel	From	Spectru			Fuel	From	Spectru	ICSBE E		Fuel	From	Spectru		
i dei	110111	m	P2006	S-2.1	i dei	110111	m	P2006	-2.1	i dei	110111	m	P2006	S-2.1
		FAST	304	330			FAST	87	72			FAST	45	5
	MET	INTER	14	14		MET	INTER	4	1	MET	MET	INTER	2	0
	IVI⊏ I	THERM	127	140			THERM	2	0			MIXED	1	0
		MIXED	32	33			MIXED	1	0		SOL	THERM	72	16
	SOL	INTER	3	3	PU		THERM	529	307			FAST	2	2
HEU	SUL	THERM	463	472			FAST	6	0	MIX	COMP	INTER	3	0
		FAST	8	5		COMP	INTER	1	1		COMP	THERM	255	65
	COMP	INTER	14	14		COMP	THERM	21	0	MISC	MIXED	17	0	
	COMP	THERM	216	214			MIXED	7	0			FAST	8	0
		MIXED	45	48		MET	FAST	10	10		THERM	56	0	
	MISC	THERM	7	7			THERM	1	0		MIXED	8	0	
	MET	FAST	20	20	11000	INTER	29	29	SPEC	MET	FAST	20	3	
	SOL	THERM	5	5	U233	SOL	THERM	192	113	Total			3955	2237
IEU		FAST	2	2			MIXED	8	8					
IEU	COMP	INTER	14	16		COMP	THERM	5	5					
	COMP	THERM	41	34										
		MIXED	3	14										
	MET	THERM	65	26										
LEU	SOL	THERM	104	67										
LEU	COMP	THERM	1066	136										
	MISC	THERM	11	0										

Sensitive nuclide: 75 Sensitive element: 40




1 Introduction

□ 2023, CENDL-3.2 library was tested with the ENDITS-2.1.

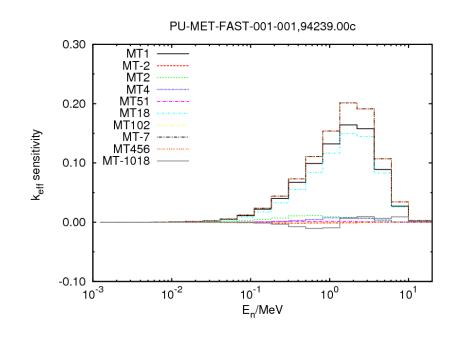
By introducing the cumulative chi-square, normalized chi-square, and Pearson's chi-square test related to sensitive nuclides, 16 major nuclides causing criticality calculation deviations were identified: Al-27, F-19, Th-232, Be-9, C-12, Fe-56, Pu-239,240, U-235,238, N-14, Mo-95, Nb-93, Zr-90,94, Cd-113.

■ Sensitivity-related statistical analysis and trend analysis can only identify the nuclides that cause criticality calculation deviations. Thus, further identifying the sources of these deviations is the core problem need to be solved.

02

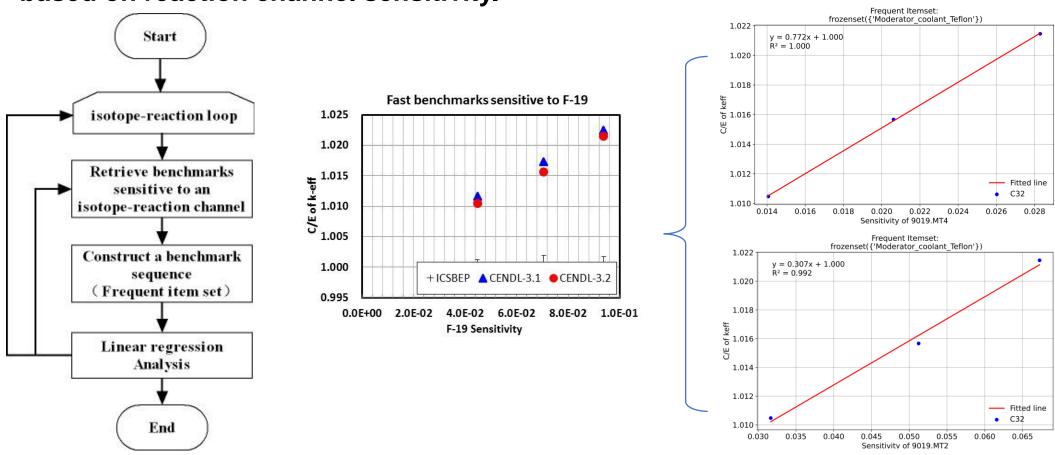
Methodology of

trend analysis based on reaction channel sensitivity


2 Methodology

- ☐ Sensitivity database of criticality benchmarks, ENDITS-SEN-2.1
 - ☐ The sensitivities of k_{eff} in groups were calculated using the MCNP/JMCT code.
 - \square Reaction channels: (n,tot), (n,el), (n,inl), (n,f), (n,y), nubar, PFNS, TSL and et al.
 - □ Sensitive nuclides: $|k_{eff}|$ sensitivity to (n,tot) reaction | > 1%.

Table: sen_mat_mt

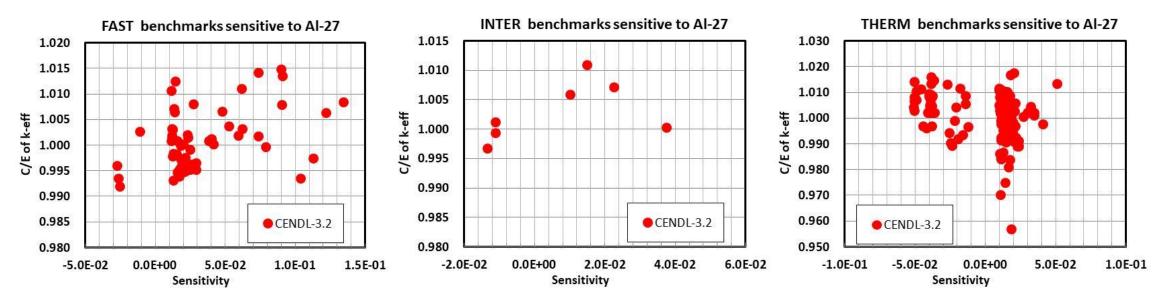

case	mat	mt	sensitivity
PMF001_01	94239	-1018	-3.7718E-07
PMF001_01	94239	-7	0.964619
PMF001_01	94239	-2	-0.00886138
PMF001_01	94239	1	0.820482
PMF001_01	94239	2	0.0660574
PMF001_01	94239	4	0.0362481
PMF001_01	94239	18	0.726546
PMF001_01	94239	102	-0.00886108
PMF001_01	94239	456	0.963031

2 Methodology

□ To further pinpoint the sources of criticality calculation deviations at the reaction channel level, the Apriori algorithm was applied to establish a trend analysis method based on reaction channel sensitivity.

03

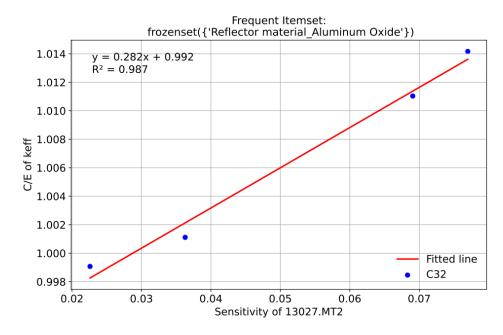
Trend Analysis of Benchmark Test Results for Al and Cr in the CENDL-3.2 Library


Dec. 15-19, 2025 (2000)

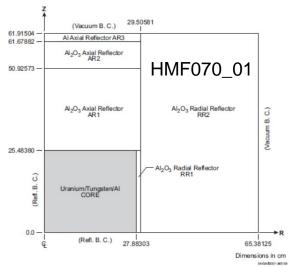
3.1 Al-27

The testing results for criticality benchmarks sensitive to Al-27 reaction data.

• When conducting trend analysis against Al-27 sensitivity by energy spectrum classification, it is difficult to identify any relationship between k_{eff} value calculation deviations and nuclear data.



No.	Frequent Itemset	Support	R ²	Cases
1	['Separator_Stainless Steel (Fe, Cr, Ni)']	0.013158	0.999487	HST008_02, HST008_06, HST008_10
2	['Reflector material_Aluminum Oxide']	0.017544	0.987124	HMF070_01, 03, HMF084_02, 15
3	['Reflector material_Borated Uranyl Nitrate (B, U, N, H, O), Uranyl Nitrate, Water (Light Water)']	0.017544	0.975849	HMCT001_20-23
4	['Reflector material_Depleted Uranium', 'Fuel type_IEU']	0.013158	0.835649	IMF012_01, IMF017_01-03
5	['Cladding material_Stainless Steel']	0.035088	0.80535	HCT011_01-03, HCT012_01-02, HCT013_01-02, HCT014_01
6	['Solid poison_Stainless Steel (Fe, Cr, Ni)']	0.017544	0.795676	SHMT002_01-04
7	['Solid poison_Cadmium']	0.017544	0.774065	HMT006_17-20
8	['Reflector material_Aluminum', 'Fuel type_IEU']	0.013158	0.745362	IMF013_01, IMF014_01, IMF014_02
9	['Moderator_coolant_Polyethylene', 'Spectrum_FAST']	0.013158	0.709716	HMF034_02, HMF047_01, IMF017_01-03
10	['Reflector material_Depleted Uranium']	0.013158	0.6605	HMF055_01, IMF012_01, IMF017_01-03
11	['Moderator_coolant_Polyethylene', 'Reflector material_Depleted Uranium']	0.013158	0.653823	IMF017_01, IMF017_02, IMF017_03
12	['Reflector material_Iron']	0.013158	0.650477	PMF045_06D, PMF045_07D, SMF014_D
13	['Spectrum_INTER']	0.013158	0.631799	HMI001_01, HMI005_05, HMI008_02
14	['Separator_Tantalum']	0.013158	0.530989	PMF045_03D, PMF045_04D, PMF045_06D



□ Reflector material _ Aluminum Oxide

HMF070_01, HMF070_03, HMF084_02, HMF084_15

True trend: Based on physical judgment, it is confirmed that the positive trend is related to the ²⁷Al(n,el) reaction from 0.1 to 3 MeV energy range.

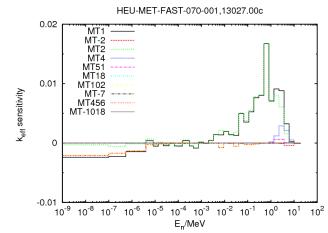
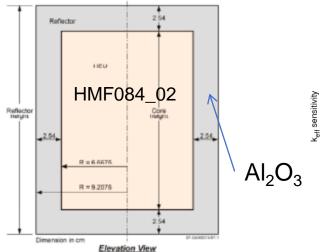
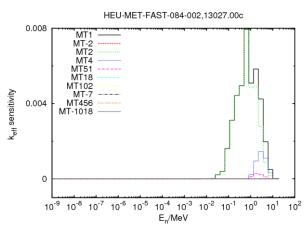
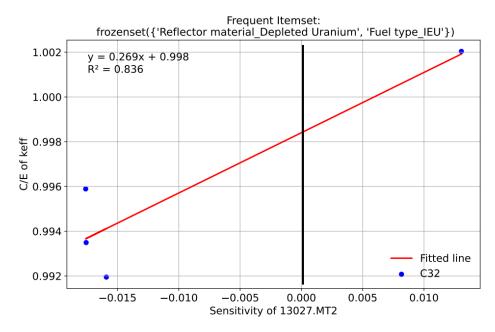




Figure 11. Benchmark-Model Geometry for ZPR-9/7.

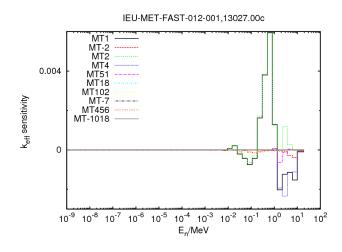


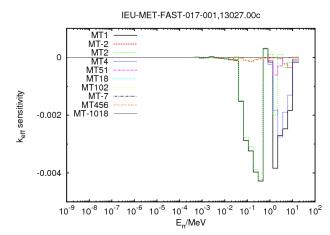
□ Reflector material_Depleted Uranium, Fuel type_IEU

IMF012_01, IMF017_01-03

Spurious trend: An abnormal linear trend that is merely a mathematical coincidence.

IMF012_01

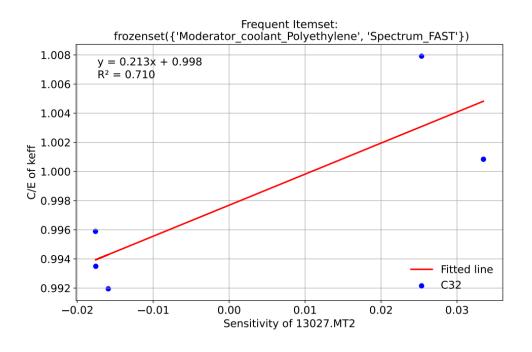

Table 14. Compositions of the Benchmark-Model (atoms/barn-cm)


Nuclide	Core	Reflector
234U	2.77890 x 10 ⁻⁵	
²³⁵ U	2.86319 x 10 ⁻³	8.30614 x 10 ⁻⁵
²³⁶ U	1.33175 x 10 ⁻⁵	
238U	1.39681 x 10 ⁻²	3.97356 x 10 ⁻²
A1	1.07829 x 10 ⁻²	
Fe	8.71333 x 10 ⁻³	4.85493 x 10 ⁻³
Ni	9.22671 x 10 ⁻⁴	4.99615 x 10 ⁻⁴
Cr	2.18244 x 10 ⁻³	1.21570 x 10 ⁻³
Mn	8.82621 x 10 ⁻⁵	4.78958 x 10 ⁻⁵
Si	1.13424 x 10 ⁻⁴	6.60492 x 10 ⁻⁵
C		1.27162 x 10 ⁻⁶

IMF017 01

Table 10. Atom Densities.

	Pellet or Tube	Structural Element	Inner Dimensions,	Outer Dimensions,	Den g/c
ı			cm	cm	
•	U(d) (Depleted Uranium Metal	Core		D = 4.46 H = 1.01	18.92
	Pellet)	Aluminum	D = 4.46	D = 4.55	2.71
		Can	H = 1.01	H = 1.07	


□ Reflector material_Depleted Uranium

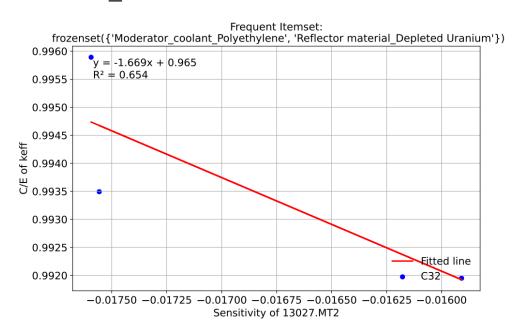
HMF055_01, IMF012_01, IMF017_01-03

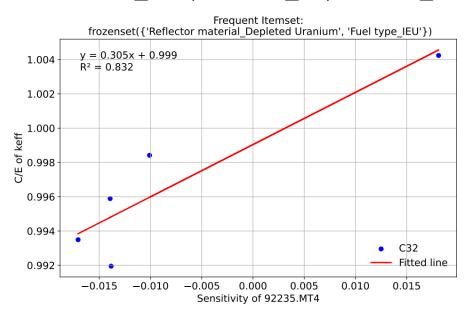
Frequent Itemset: frozenset({'Reflector material Depleted Uranium'}) y = 0.110x + 0.997 $R^2 = 0.660$ 1.002 1.000 C/E of keff .0 8666 0.996 0.994 Fitted line C32 0.992 -0.02-0.010.00 0.01 0.02 0.03 0.04 0.05 0.06 Sensitivity of 13027.MT2

■ Moderator_coolant_Polyethylene, Spectrum_FAST

HMF034_02, HMF047_01, IMF017_01-03

Spurious trend: An abnormal linear trend that is merely a mathematical coincidence.

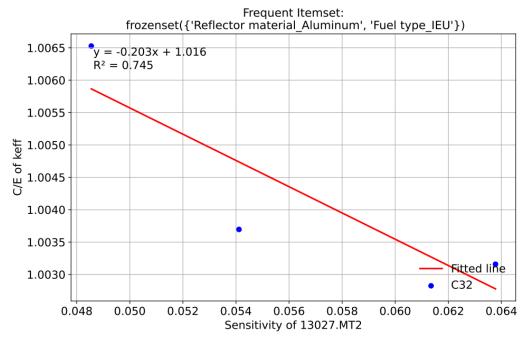



☐ Moderator_coolant_Polyethylene, Reflector material_Depleted Uranium

□ Reflector material_Depleted Uranium, Fuel type_IEU

IMF017 01-03

IMF007_01S, IMF008_01, IMF017_01-03


Spurious trend: The benchmarks are similar, and there is a negative correlation between C/E values and ²⁷Al(n,el); due to the existence of competition, the deviation maybe not correlated to ²⁷Al(n,el).

There is a positive correlation between C/E values and ²³⁵U(n,inl), which may be either a mathematical coincidence or a true trend.

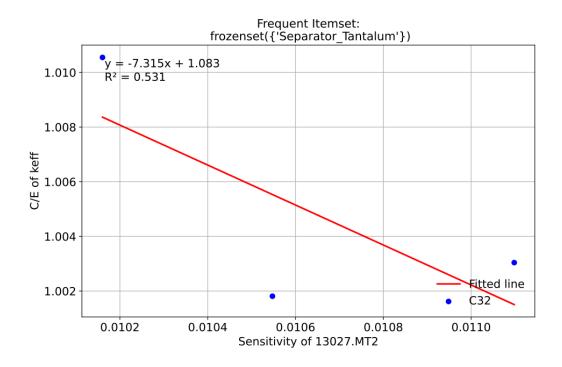


Reflector material_Aluminum, Fuel type_IEU

IMF013_01, IMF014_01-02

Spurious trend: There is a negative correlation between C/E values and ²⁷Al(n,el), which means the deviation maybe not correlated to ²⁷Al(n,el).

True trend: There is a positive correlation between C/E values and ²³⁸U(n,inl). A decreasing of ²³⁸U(n,inl) XS will get slope smaller.

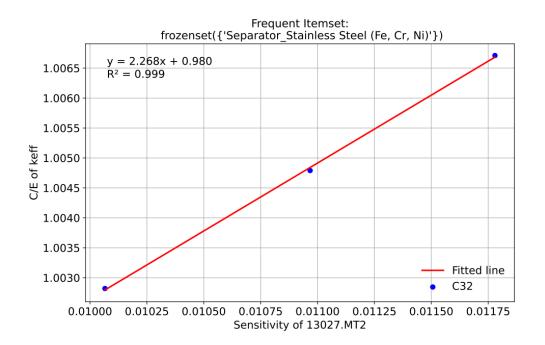

□ Reflector material_Iron

PMF045_06D, PMF045_07D, SMF014_D

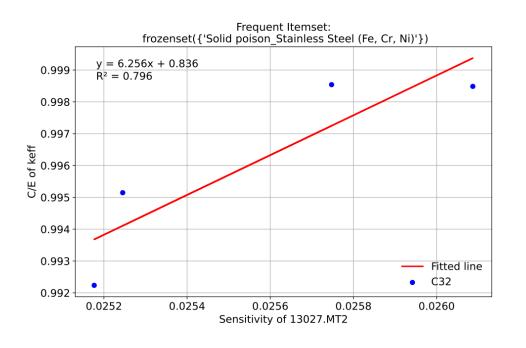
Frequent Itemset: frozenset({'Reflector material Iron'}) y = -2.498x + 1.0391.0125 $R^2 = 0.650$ 1.0100 1.0075 ੁੱਚ 1.0050 ₩ 1.0025 1.0000 0.9975 Fitted line C32 0.9950 0.010 0.011 0.012 0.013 0.014 0.015 0.016 Sensitivity of 13027.MT2

Separator_Tantalum

PMF045_03D, PMF045_04D, PMF045_06D



Spurious trend: There is a negative correlation between C/E values and ²⁷Al(n,el) sensitivity, and the deviation maybe not correlated to ²⁷Al(n,el).


□ Separator_Stainless Steel (Fe, Cr, Ni)

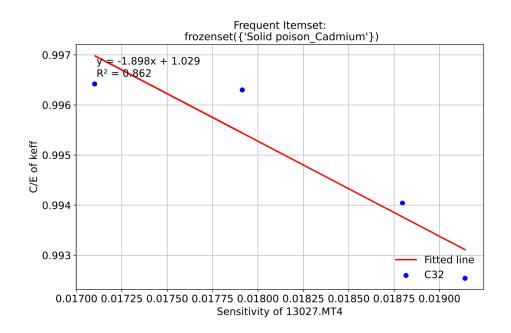
HST008_02, 06, 10

Solid poison_Stainless Steel (Fe, Cr, Ni)

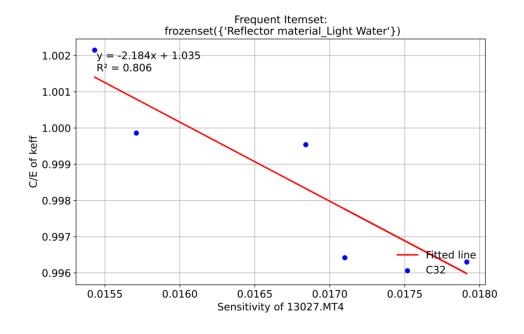
SHMT002_01-04

True trend: The benchmarks are similar, and there is a positive correlation between C/E values and ²⁷Al(n,el) sensitivity.

3.1.2 Al-27(n,inl)


No.	Frequent Itemset	Support	R ²	Cases
1	['Solid poison_Cadmium']	0.095238	0.861808	HMT006_17-20
2	['Reflector material_Light Water']	0.119048	0.806487	HMT006_19-23
3	['Reflector material_Borated Uranyl Nitrate (B, U, N, H, O), Uranyl Nitrate, Water (Light Water)']	0.095238	0.666641	HMCT001_20-23
4	['Form_MISC']	0.119048	0.643419	HMCT001_19-23

3.1.2 Al-27(n,inl)

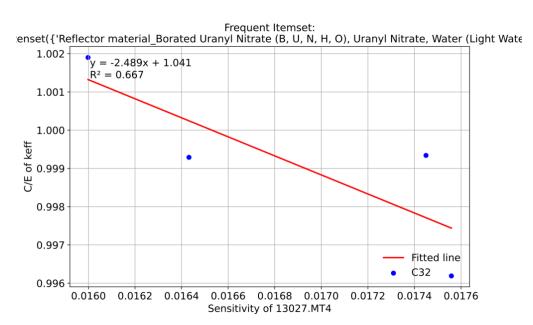

☐ Solid poison_Cadmium

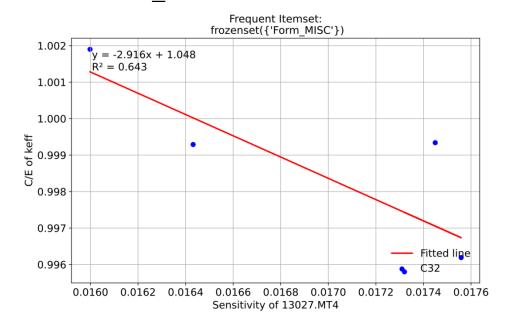
HMT006_17-20

□ Reflector material_Light Water

HMT006_19-23

Spurious trend: The benchmarks are similar, and there is a negative correlation between C/E values and ²⁷Al(n,inl); due to the existence of competition, the deviation is unrelated to ²⁷Al(n,inl).


3.1.2 Al-27(n,inl)

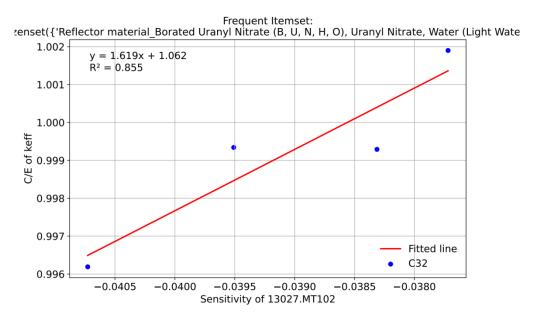

□ Reflector material_Borated Uranyl Nitrate (B, U, N, H, O), Uranyl Nitrate, Water (Light Water)

□ Form_MISC

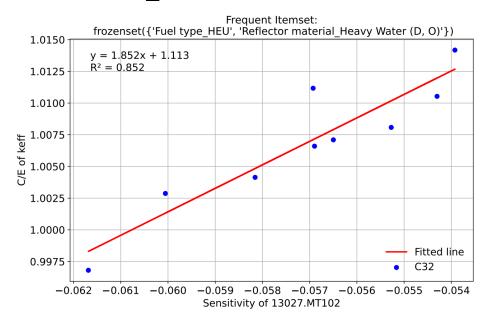
HMCT001_20-23

HMCT001 19-23

Spurious trend: a negative correlation found, and the deviation may be not correlated to ²⁷Al(n,inl).



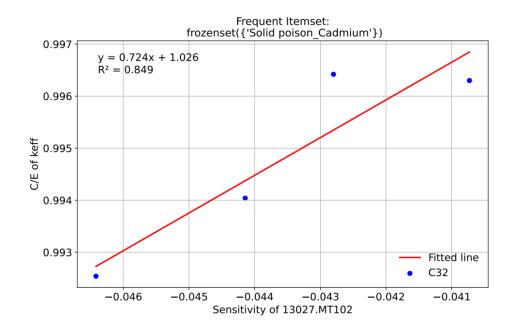
No.	Frequent Itemset	Support	R^2	Cases
1	['Form_COMP', 'Reflector material_Water (Light Water)']	0.119565	0.894945	HCT021_04, 05, 94-100, LCT003_07, 08
2	['Solid poison_Boral (B, Al, Na, Si)']	0.032609	0.859832	SHMT002_05-07
3	['Reflector material_Borated Uranyl Nitrate (B, U, N, H, O), Uranyl Nitrate, Water (Light Water)']	0.043478	0.854661	HMCT001_20-23
4	['Fuel type_HEU', 'Reflector material_Heavy Water (D, O)']	0.097826	0.852167	HCT017_01-09
5	['Solid poison_Cadmium']	0.043478	0.848747	HMT006_17-20
6	['Reflector material_Light Water']	0.054348	0.806163	HMT006_19-23
7	['Moderator_coolant_Polyethylene']	0.021739	0.682061	HMT006_01, HMT008_01S, HMT012_01D
8	['Fuel type_LEU', 'Reflector material_Heavy Water (D, O)']	0.271739	0.596201	LMT002_01-12, LMT015_01-13


□ Reflector material_Borated Uranyl Nitrate (B, U, N, H, O), Uranyl Nitrate, Water (Light Water)

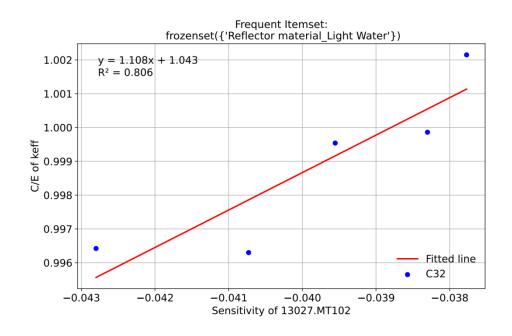
HMCT001_20-23

☐ Fuel type_HEU, Reflector material_Heavy Water (D, O)

HCT017 01-09



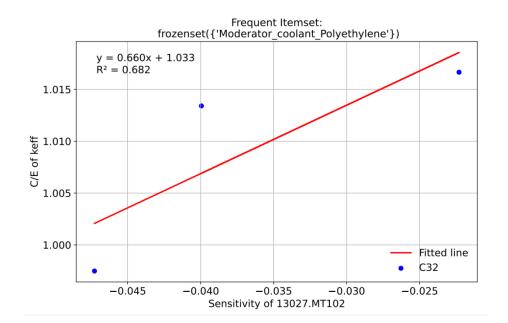
True trend: The devices are similar, and there is a positive linear correlation between C/E values and ²⁷Al(n,g) reaction sensitivity.


☐ Solid poison_Cadmium

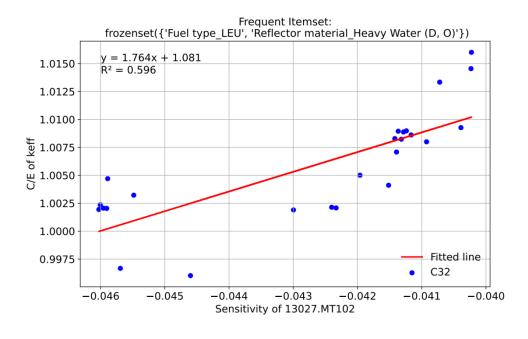
HMT006_17-20

□ Reflector material_Light Water

HMT006_19-23



True trend: The devices are similar, and there is a positive linear correlation between C/E values and ²⁷Al(n,g).


■ Moderator_coolant_Polyethylene

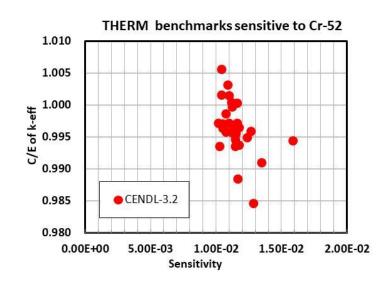
HMT006_01, HMT008_01S, HMT012_01D

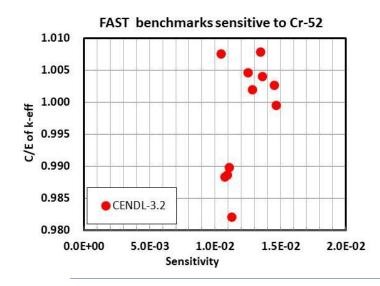
□ Fuel type_LEU, Reflector material_Heavy Water (D, O)

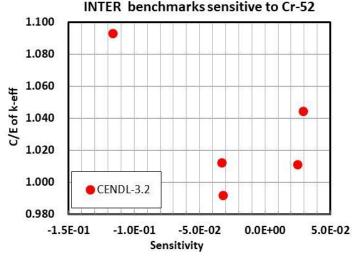
LMT002_01-12, LMT015_01-LMT015_13

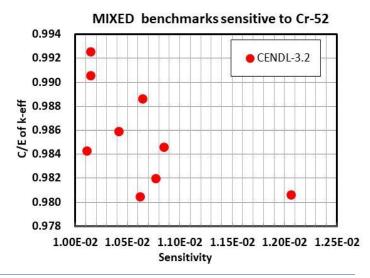
True trend: The devices are similar, and there is a positive linear correlation between C/E values and ²⁷Al(n,g).

3.1 Al-27

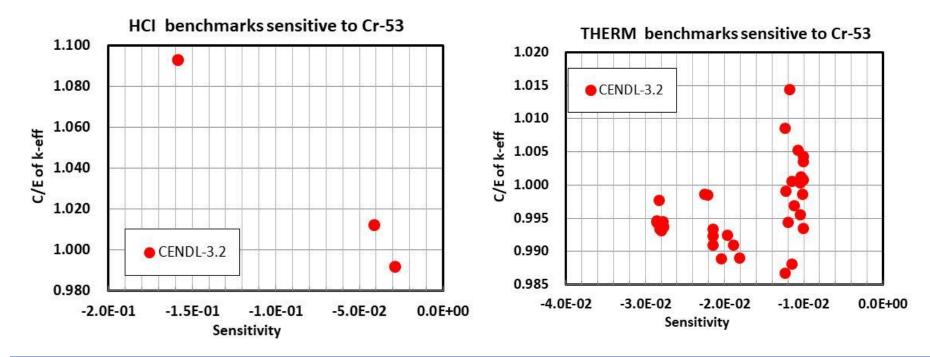

□ Summary of Al-27


- There are linear trends positively correlated with the sensitivities of the ²⁷Al(n,el) reaction in the 0.1-3 MeV energy range and the (n,g) reaction in the thermal energy range, indicating that the ²⁷Al(n,el) and (n,g) cross sections need to be improved.
- No linear positive trend correlated with the sensitivity of the ²⁷Al(n,inl) reaction was found.
- There are spurious trends caused by mathematical coincidences or nuclide-reaction competition.


3.2 Cr-52,53



- Testing results for the benchmarks sensitive to Cr-52
 - Again, it is difficult to identify the relationship between k_{eff} deviations and nuclear data when conducting nuclide sensitivity analysis by energy spectrum classification.

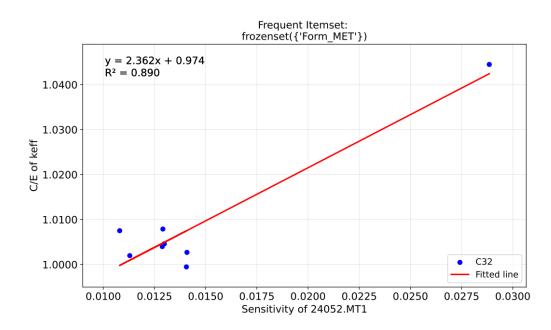


3.2 Cr-52,53

□ Testing results for the benchmarks sensitive to Cr-53

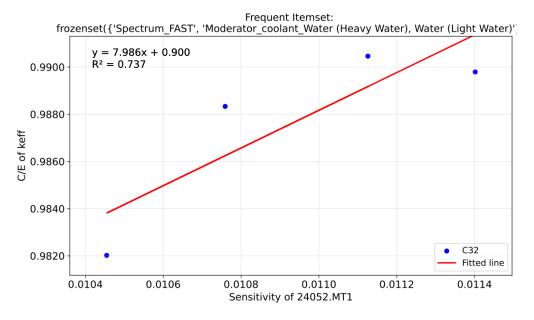
• It is difficult to identify the relationship between k_{eff} deviations and Cr-53 data when the result of all thermal benchmarks sensitive to Cr-53 is analyzed.

3.2.1 Cr-52(n,tot)


No.	Frequent Itemset	Support	R^2	Cases
1	['Form_MET']	0.1538	0.890	HMF061_01, HMF075_01, MMF011_01-4,
		0.1556	0.090	PMF033_01, PMI002_01
2	['Spectrum_FAST', 'Moderator_coolant_Water (Heavy	0.0760	0.727	HCF003_02, HCF003_21-23
	Water), Water (Light Water)']	0.0769	0.737	
3	['Spectrum_FAST', 'Reflector material_Water (Light Water)']	0.0962	0.648	HCF003_01, HCF003_02, HCF003_21-23

3.2.1 Cr-52(n,tot)

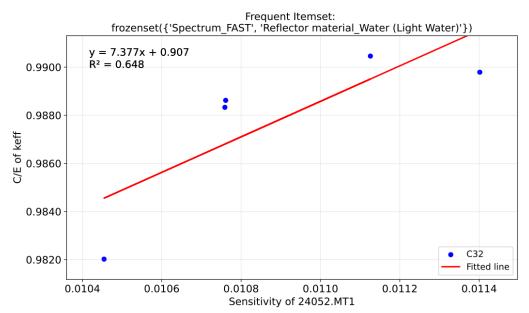
□ Form_MET


HMF061_01, HMF075_01, MMF011_01-4, PMF033_01, PMI002_01

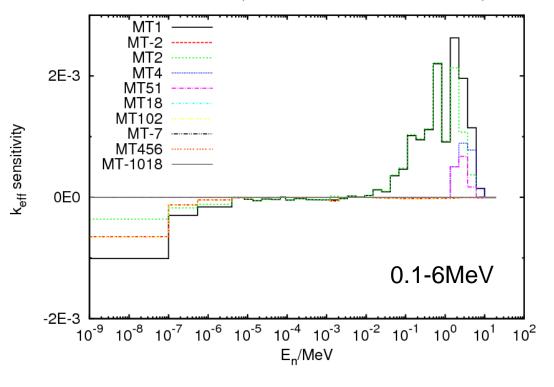
Spurious trend: It may merely be a mathematical coincidence.

□ Spectrum_FAST, Moderator_ coolant_ Water (Heavy Water), Water (Light Water)

HCF003_02, HCF003_21-23

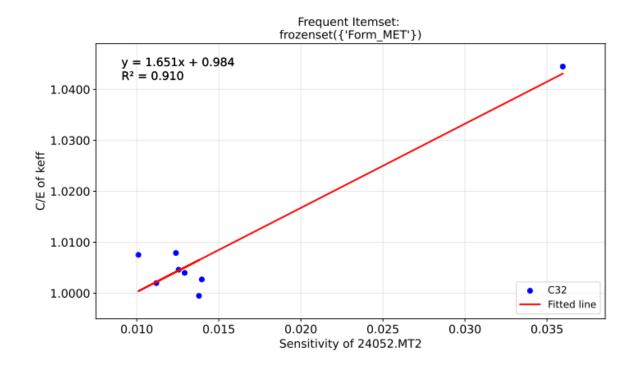

True trend: The benchmarks are similar, and there is a positive correlation between C/E values and ⁵²Cr(n,tot).

3.2.1 Cr-52(n,tot)


■ Spectrum_FAST, Reflector material_Water (Light Water)

HCF003_01-02, HCF003_21-23

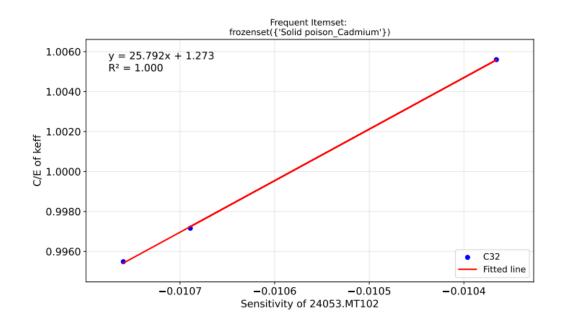
True trend: The benchmarks are similar, and there is a positive correlation between C/E values and ⁵²Cr(n,tot).

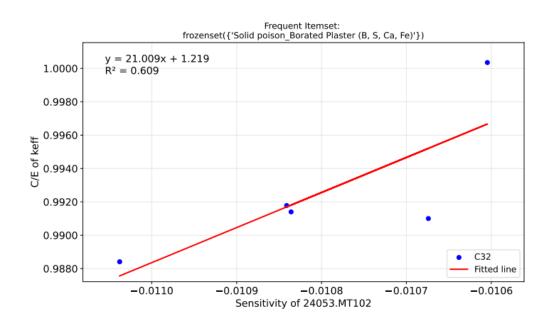


32

3.2.2 Cr-52(n,el)

No.	Frequent Itemset	Support	R^2	Cases
1	['Form_MET']	0.242	0.910	HMF061_01, HMF075_01, MMF011_01-04, PMF033_01,
				PMI002_01




Spurious trend: It may merely be a mathematical coincidence.

3.2.3 Cr-53(n,g)

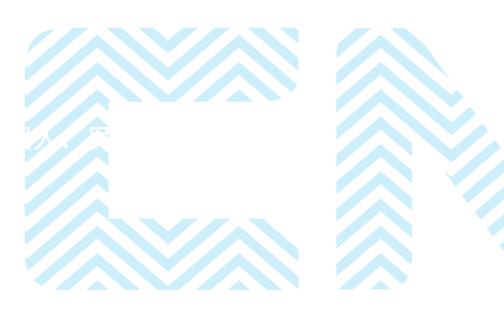
No.	Frequent Itemset	Support	R^2	Cases
1	['Solid poison_Cadmium']	0.0303	1.000	HST033_07S,08S, ICT002_05
2	['Solid poison_Borated Plaster (B, S, Ca, Fe)']	0.0758	0.609	HST033_13S-14S,17S-19S

True trend: The benchmarks are similar, and there is a positive correlation between C/E values and ⁵³Cr(n,g) sensitivity.

3.2 Cr-52,53

□ Summary of Cr

- There is a linear trend positively correlated with the cross-section sensitivity of ⁵²Cr(n,tot); sensitivity analysis indicates that the total cross-section from 0.1 to 6 MeV energy range may need to be improved.
- There is a linear trend positively correlated with the cross-section sensitivity of ⁵³Cr(n,g), and this cross-section needs to be improved.
- The linear trend positively correlated with the cross-section sensitivity of ⁵²Cr(n,el) may be a spurious trend.


4 Summary

- ☐ The Apriori machine learning algorithm was applied to establish a trend analysis method for criticality benchmark tests based on nuclide-reaction channel sensitivities, enabling automated analysis.
 - The granularity of trend analysis reaches the reaction channel level.
 - The efficiency of trend analysis is significantly improved, though the results still require supplementary expert judgment.
- It was found that the data related to the ²⁷Al(n,el) and (n,inl) reactions, as well as the (n,γ) cross-section, need to be improved.
- It was also determined that the cross-sections of ⁵²Cr(n,tot) and ⁵³Cr(n,γ) need to be improved.

Thank you for your attention!

