

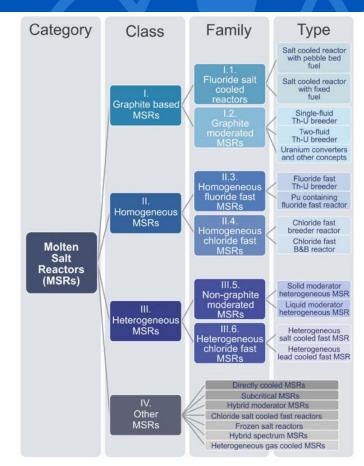
Uncertainties in Generation IV Reactors and Nuclear Data

Alexander Ryzhkov

Lead Engineer at National Research Nuclear University MEPhl

Outline

- Generation IV and Uncertainties
- Sensitivity and Uncertainty Analysis
- Uncertainty Propagation for Generation IV Reactors
- Nuclear Data Needs for Generation IV Reactors
- Summary


Generation IV and Uncertainties

Relevance

- Worldwide interest in different Generation IV realizations
- Some Gen-IV reactors are under construction
- Interest in Best Estimate Plus Uncertainty (BEPU)

Challenges:

- Accurately predict the core behavior
- Different from LWRs physics (materials, geometry, temperatures, fuel, spectra, etc.)
- Limited nuclear data (basis for every neutron transport simulation!!!)
- Limited material property data
- Limited experimental (validation) base

Example of an MSR classification [1]

[1] IAEA, 2023. Status of molten salt reactor technology (No. STI/DOC/010/489). International Atomic Energy Agency, Vienna, Austria.

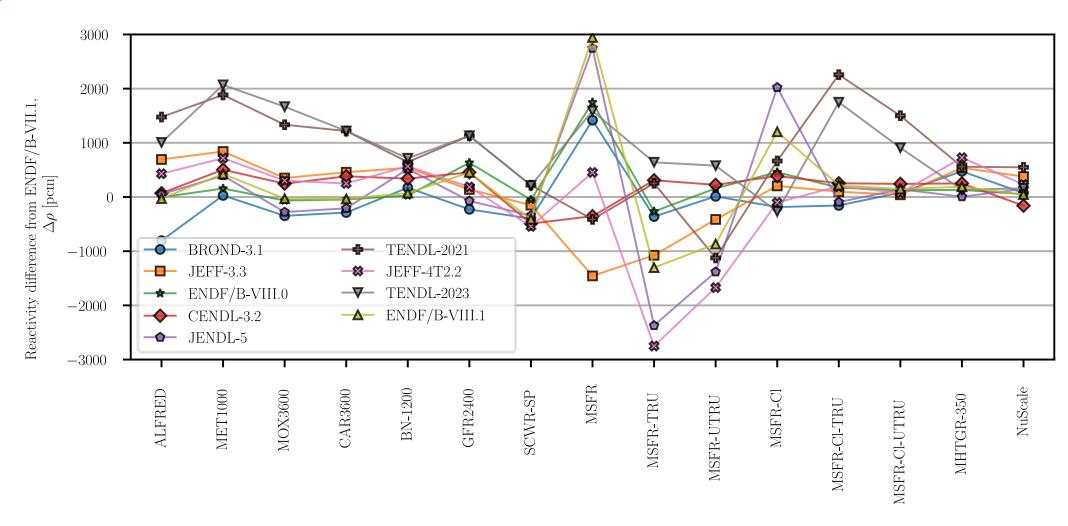
Uncertainties in Generation IV

Uncertainty Sources

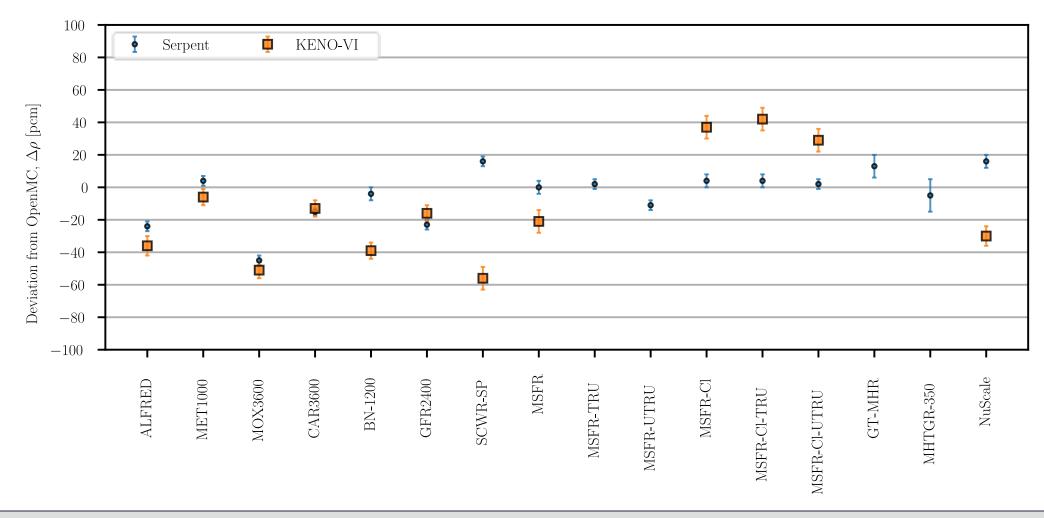
Uncertainty Types:

- Modeling
- Numerical
- Nuclear data

Nuclear data are considered as a main uncertainty source


Sensitivity and uncertainty analysis with respect to nuclear data

Library	k	Δho [pcm]
ENDF/B-VII.1	1,01198(6)	(ref)
BROND-3.1	1,00844(6)	-347(8)
JEFF-3.3	1,01559(5)	351(8)
ENDF/B-VIII.0	1,01131(5)	-65(8)
CENDL-3.2	1,01451(6)	246(8)
JENDL-5	1,00914(5)	-278(8)
TENDL-2021	1,02583(6)	1334(8)
JEFF-4T2.2	1,01508(5)	302(8)
TENDL-2023	1,02935(6)	1667(8)
ENDF/B-VIII.1	1,01167(6)	-30(8)
JEFF-4	1,01780(6)	565(8)


Effect of different libraries in simulation for k

Eigenvalue deviation with different libraries from ENDF/B-VII.1

Effect of different tools in simulation for k

Eigenvalue deviation for Serpent and SCALE/KENO-VI from OpenMC

Sensitivity and uncertainty analysis

Perturbation-based Approach

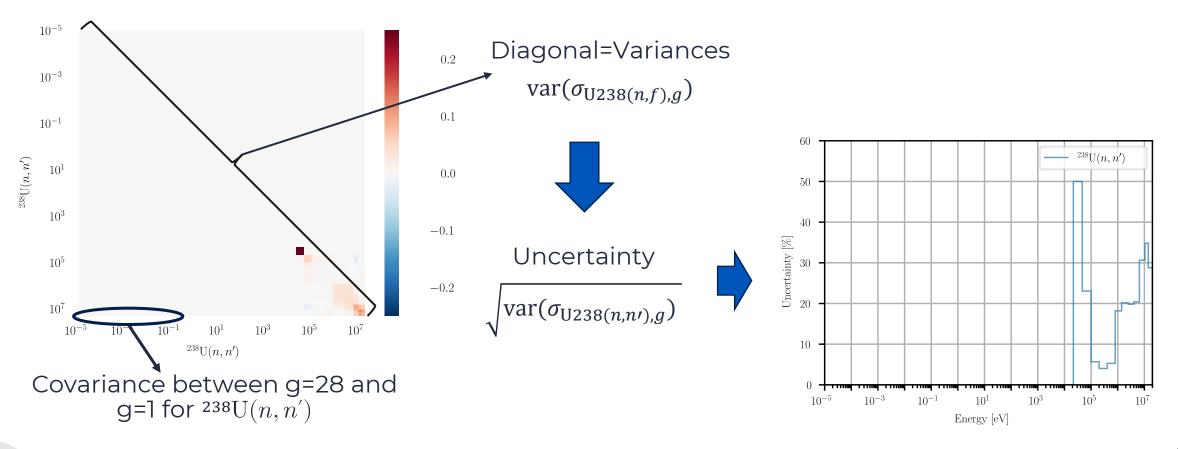
- provides the uncertainties of chosen responses (eigenvalues, reactivity coefficients, etc.) to ensure appropriate safety margins are set
- provides the sources of the uncertainties
- allows assessing nuclear data performance
- allows identifying data requiring the attention
- allows finding the current nuclear data gaps

Sensitivity Analysis

$$S(R, \alpha) \equiv \frac{\alpha}{R} \frac{\mathrm{d}R}{\mathrm{d}\alpha}$$

Perturbation Theory*

$$S(k,\alpha) = \frac{\alpha}{k} \frac{\mathrm{d}k}{\mathrm{d}\alpha} = -\alpha \frac{\left\langle \psi^*, \left(\frac{\partial \hat{A}}{\partial \alpha} - \frac{1}{k} \frac{\partial \hat{F}}{\partial \alpha} \right) \psi \right\rangle}{\left\langle \psi^*, \frac{1}{k} \hat{F} \psi \right\rangle} + \mathcal{O}(\delta \psi)$$

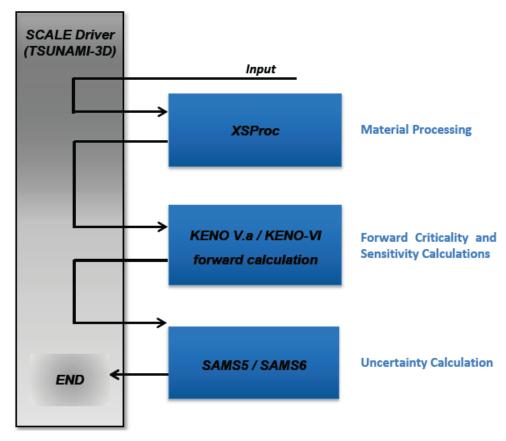

Uncertainty Analysis

$$\delta R(\alpha) = \sqrt{SCS^T}$$

C — the covariance matrix

Covariance Matrices

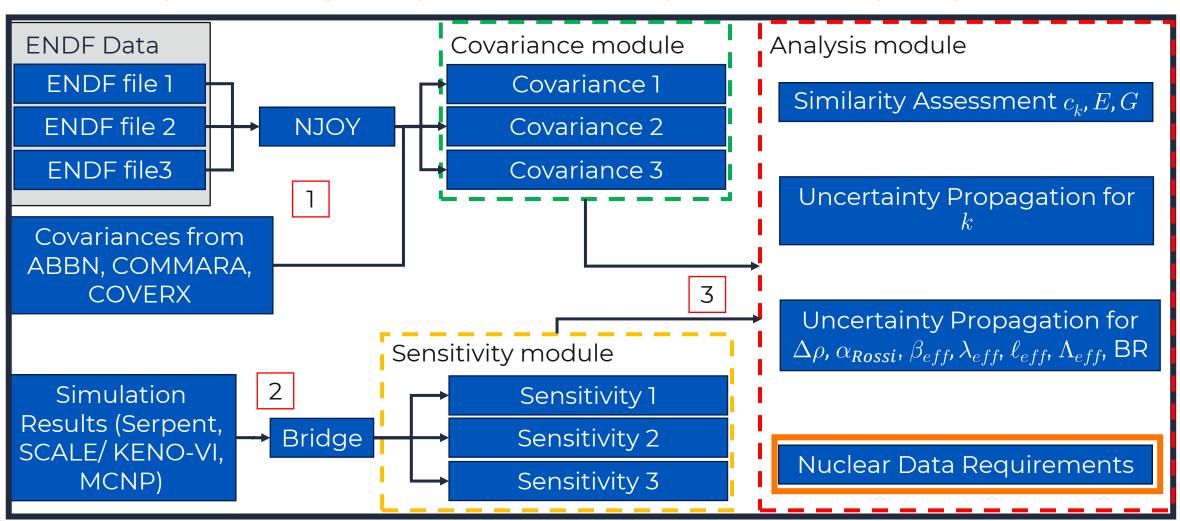
An example of covariance matrix for $^{238}\mathrm{U}(n,n')$ from ENDF/B-VII.1


Tools for Computing Sensitivities

SCALE

- SCALE has a set of modules/sequences for sensitivity and uncertainty analyses (see TSUNAMI-3D example
- Pre-prepared covariance data

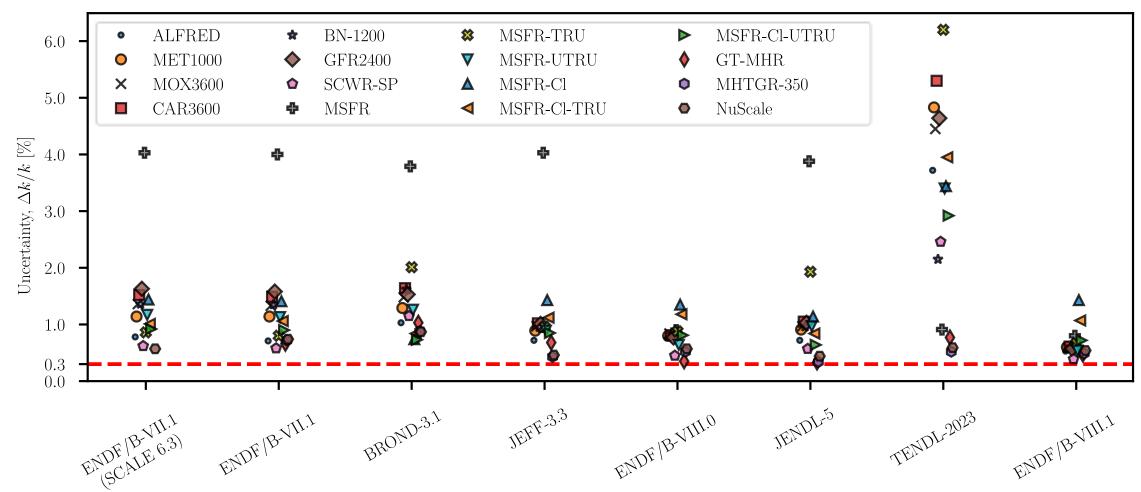
Serpent


- Serpent is only capable of computing sensitivity (though it is able to use AMPX covariance data)
- No openly available covariance data (including SCALE's)
- One must prepare covariance data from ENDF-6 files

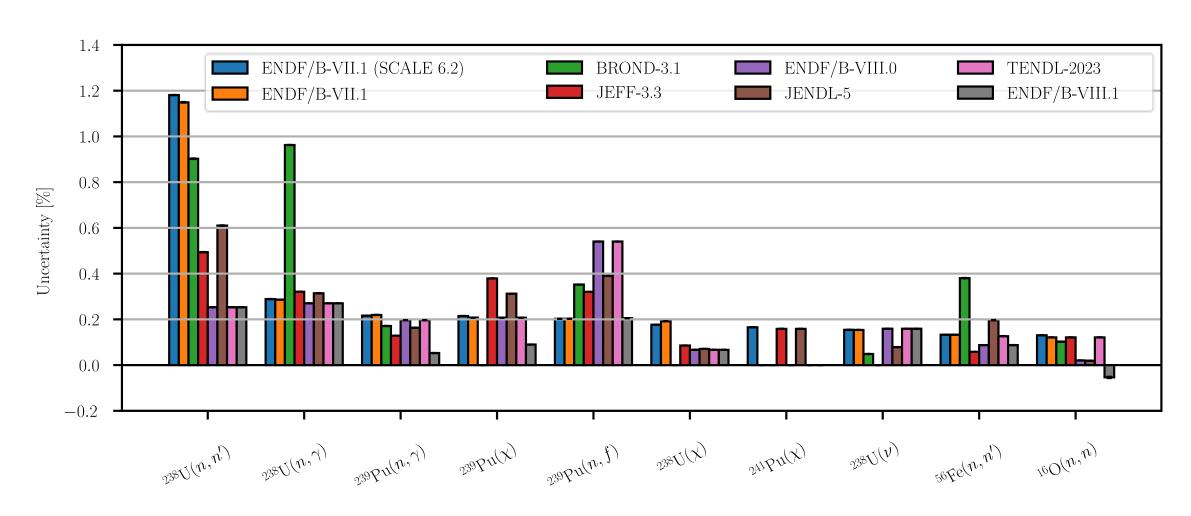
Sensitivity and uncertainty analysis sequence of SCALE/TSUNAMI-3D (CE) [1]

SAUNA (Sensitivity And Uncertainty Analysis)

SAUNA: A Python package for Systematic Sensitivity and Uncertainty Analysis


Advanced Nuclear Reactors (16 models)

The models were developed for SCALE (KENO-VI), Serpent, and OpenMC


Uncertainty Propagation for k

Nuclear data uncertainty for advanced nuclear reactor systems

Nuclear Data Uncertainty Sources for k

An example of uncertainty breakdown for the MOX3600 model

The target accuracy requirement (TAR) problem

The optimization problem

$$\begin{cases} \min_{\delta\alpha_i} \sum_{i=1}^{\lambda_i} \frac{\lambda_i}{\delta\alpha_i^2} \\ \delta R_j(\alpha) \leq \delta R_{j,TAR} \\ (\delta\alpha_i)_{min} \leq \delta\alpha_i \leq (\delta\alpha_i)_0 \end{cases}$$

Parameter costs from WPEC/SG26

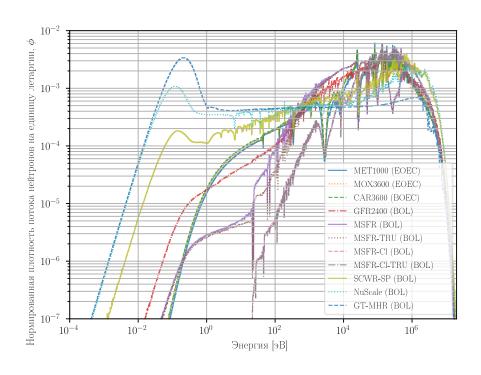
Nuclides	Reaction	λ_i
²³⁵ U, ²³⁸ U, ²³⁹ Pu	$(n,\gamma),(n,f),(\nu)$	1
Fuel	$(n,\gamma),(n,f),(\nu)$	2
Non-fuel	(n, γ)	1
All	(n, n)	1
The others	The others	3

 λ_i — the cost parameter

 $\delta\alpha_i$ — the uncertainty of parameter i (cross sections,...)

 $\delta R_{j,TAR}$ — the target uncertainty of output j

 $(\delta \alpha_i)_{min}$ — the minimum achievable uncertainty of parameter i


 $(\delta \alpha_i)_0$ — the initial uncertainty of parameter i

The problem is solved in the 7-group approximation of WPEC/SG46

WPEC – Working Party on International Nuclear Data Evaluation Co-operation (NEA/OECD)

Generalize the Nuclear Data Needs

Selecting Models for the Analysis

Neutron Flux per Unit Lethargy ϕ_u

Correlation Index E (average cosine between two sensitivity vectors) for the Eigenvalue k

Target Accuracy Requirements

The solution of the optimization problem

Target Accuracy Requirements for MOX3600 as an example

Reaction	Uncertainty, $\Delta k/k$ [%]	
	Initial	Target
238 $\mathrm{U}(n,n')$	1,04	0,07
$^{238}\mathrm{U}(n,\gamma)$	0,24	0,12
$^{239}\mathrm{Pu}(n,\gamma)$	0,21	0,05
$^{239}\mathrm{Pu}(\chi)$	0,21	0,05
239 Pu (n,f)	0,20	0,20
Total	1,20	0,31*

Target Accuracy Requirements

TARs for Fast Reactors with UPu Fuel

Desetion	Group	Uncertainty [%]	
Reaction		Initial	Target
$^{f{238}}{ m U}(m{n},m{n}^{'})$	2	16,9	0,8
	1	19,3	0,8
$\mathbf{^{238}U}(oldsymbol{n},oldsymbol{\gamma})$	4	1,6	0,5
$^{239}\mathrm{Pu}(oldsymbol{n},oldsymbol{\gamma})$	4	8,2	1,3
$^{56}{ m Fe}(m{n},m{n}')$	2	11,6	1,6
$^{-14}$ N (n, α)	1	23,6	1,4
14N(n , p)	1	31,5	2,3
	2	24,8	1,6

This reduces the contribution from the $^{238}{\rm U}(n,n')$ uncertainties in groups 1 and 2 by 38 and 34 pas times: from 0,58% to 0,02%

TARs for Thermal Reactors with ${\bf U}$ Fuel

Reaction	Group	Uncertainty [%]	
		Initial	Target
$^{238}{ m U}(n,\gamma)$	7	1,8	0,5
$^{235}{ m U}(u)$	7	0,7	0,2
$^{235}{ m U}(n,\gamma)$	7	1,6	0,4
$^{1} ext{H}(n,\gamma)$	7	2,6	0,8

The TARs for thermal systems are rather too optimistic and can be further reduced via integral experiments

Summary

- 1. Countries develop Gen-IV systems
- 2. Uncertainty quantification is crucial for designing new generation system in the frame of lack in experience
- 3. A series of models has been developed to systematically assess the influence of nuclear data in Gen-IV nuclear reactors
- 4. Nuclear data uncertainties were propagated; it is shown that they introduce uncertainties larger than ones from tools
- 5. Uncertainty propagation results provided the base for nuclear data needs for Gen IV reactors via SAUNA

Thank you for your attention!

