World Status of Fast Reactors and IAEA E&T Resources on Innovative Nuclear Energy Systems

Vladimir Kriventsev, Nicole Virgili, Panashe Ndlalambi

Fast Reactor Technology Development Team Nuclear Power Technology Development Section Division of Nuclear Power Department of Nuclear Energy International Atomic Energy Agency

IAEA Interregional Workshop on Aspects of Modelling and Simulation in Gen-IV Type SMR Developments, 03-07 November 2025, Moscow

Fast Reactors: World Status and IAEA Resources

- Fast Reactors: World Status
 - in Operation
 - under Construction
 - in Development
 - IAEA Advanced Reactors Information System (ARIS)
- IAEA Educational and Training Resources for Innovative SMRs
 - Joint ICTP-IAEA Workshops
 - IAEA ONCORE Initiative: Open-Source Nuclear Codes for Reactor Analysis
 - Webinars
 - FR26 International Conference on Fast Reactors and Related Fuel Cycles

Fast Reactors: World Status and IAEA Resources

- Fast Reactors: World Status
 - in Operation
 - under Construction
 - in Development
 - IAEA Advanced Reactors Information System (ARIS)
- IAEA Educational and Training Resources for Innovative SMRs
 - Joint ICTP-IAEA Workshops
 - IAEA ONCORE Initiative: Open-Source Nuclear Codes for Reactor Analysis
 - Webinars
 - FR26 International Conference on Fast Reactors and Related Fuel Cycles

Fast Reactors in Operation & under Commissioning

Country	Name	Coolant	Fuel	Purpose	Power (th/e) MW	Year (Op.)	Status
	BOR-60	sodium	UO ₂	experimental	60/10	1969	operating
Russia	BN-600	sodium	UO ₂	prototype	1470/600	1980	operating
	BN-800 sodium UO		UO ₂ /MOX	commercial	2100/880	2015	operating
China	CEFR	sodium	UO ₂	experimental	65/20	2011	operating
	CFR600-1	sodium	UO ₂ /MOX	prototype	1500/650	2023	operating
India	FBTR	sodium	UO ₂	experimental	40/13	1985	operating
maia	PFBR	sodium	UO ₂	prototype	1250/500	2026	commissioning
Japan	JOYO	sodium	UO ₂ /MOX	experimental	100/	1978	lic renew (2026)

BN-600, Russia, 1980 IAEA WS on Gen-IV Type SMRs: FR Status Vladimir Kriventsev, 4 Nov 2025, Moscow

BN-800 Russia, 2015

CEFR, 20 MW(e) China, 2011

FBTR, 13 MW(e) India, 1985

PFBR, 500 MW(e) India, 2024

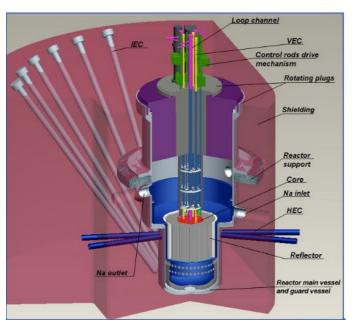
BN-600 (since 1980)

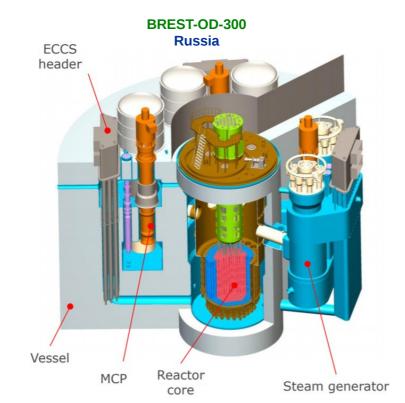
	S-PAGE
Parameter	Value
Thermal power, MW	1470
Electric power, MW	600
Number of heat removal loops	3
Primary circuit configuration	Pool
Steam generator design	Once-through, sectional-modular
Maximum neutron flux density, n·cm ⁻² ·s ⁻¹	6.5·10 ¹⁵
Fuel	UO ₂
Max. fuel burn-up, % h. a.	11.1
Inlet/outlet core coolant temperature, °C	377/550
Inlet/outlet SG coolant temperature, °C	518/328
Inlet/outlet SG water/steam temperature, °C	241/507
Live steam pressure, MPa	13.2
Design lifetime, year	30 (extended to 45) 60

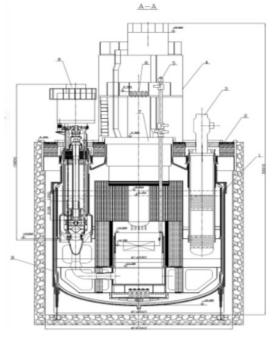
BN-800 (since 2015)

Parameter	Value
Thermal power, MW	2100
Electric power, MW	880
Number of heat removal loops	3
Configuration of the primary circuit	Pool
Steam generator design	Once-through, sectional-modular
Maximum neutron flux density, n·cm ⁻² ·s ⁻¹	8.8·10 ¹⁵
Fuel	UO ₂ -PuO ₂
Max. fuel burn-up, % h. a.	9.9
Inlet/outlet core coolant temperature, °C	354/547
Inlet/outlet SG coolant temperature, °C	505/309
Inlet/outlet SG water/steam temperature, °C	210/490
Live steam pressure, MPa	13.7
Design lifetime, year	40

PFBR: Prototype Fast Breeder Reactor (India)




Fast Reactors under Construction


Country	Name	Coolant	Fuel	Purpose	Power, MW(th/e)	Year (Op.)	Status
Russia	MBIR	sodium	MOX	experimental	150/50	~2028	construction
	BREST-OD-300	lead	PuN/UN	demonstrator	700/300	~2026	construction
China	CFR600-2	sodium	UO ₂ /MOX	prototype	1500/650	~2028	construction

MBIR, Russia

CFR600, China

IAEA WS on Gen-IV Type SMRs: FR Status Vladimir Kriventsev, 4 Nov 2025, Moscow

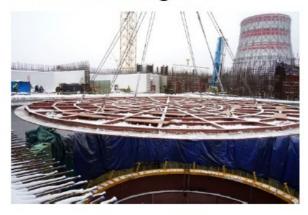
Status of MBIR

CURRENT STATUS OF CONSTRUCTION

MBIR construction site (2024)

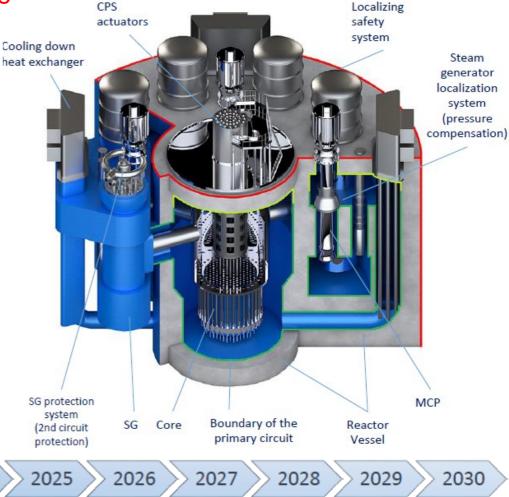
CONSTRUCTION

As presented by Ms Yulia Kyzina at TWG-FR Meeting in June 2025


Status of BREST-OD-300

Construction status at PDEC site (December 2023) Mounting of the BREST-OD-300 reactor began

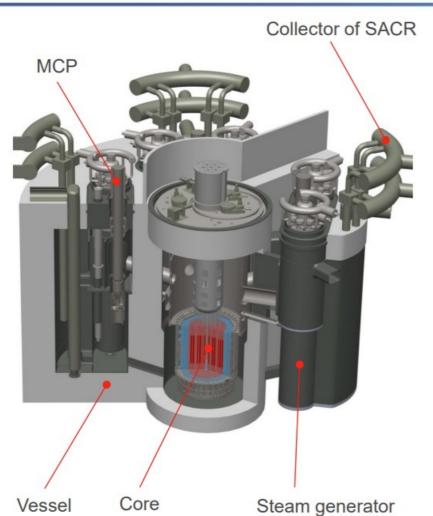
The lower tier of the enclosing structure was immersed in the reactor shaft (December 2023)



primary circuit protection) Vessel 2024 2025 2026 2028 2029 2030

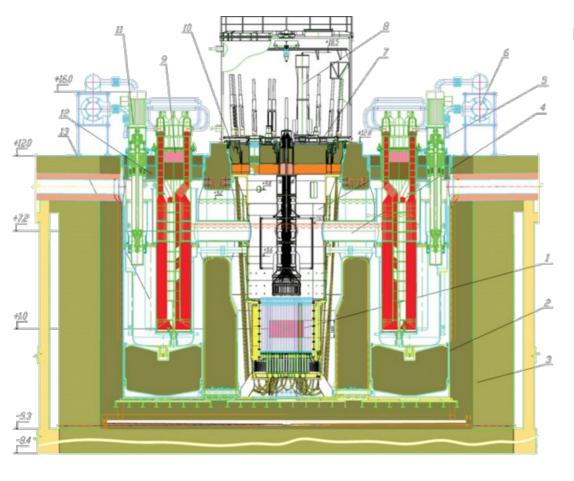
Construction and commissioning of the Fuel (re-) fabrication module

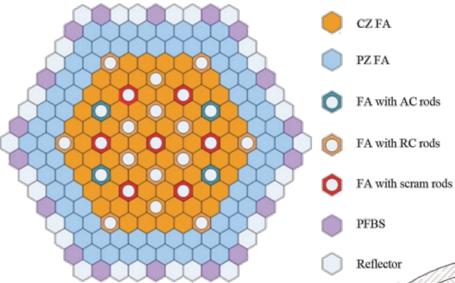
Equipment manufacturing, construction of the nuclear power plant with the BREST-OD-300 lead-cooled fast reactor



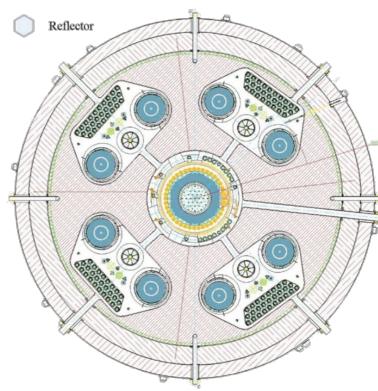
Construction and commissioning of the Reprocessing module

BREST 300





Thermal power, MW	700
Electric power, MW	300
Steam production rate, no less than, t/hour	1480
Coolant of the first contour	Lead
Gas pressure above the lead level: - exceed, MPa - maximal, MPa	0,003-0,008 0,02
Average temperature of the lead coolant on the active zone entry/ exit, °C	420/540
Average temperature of the lead coolant on the steam generator entry/ exit, °C	340/505
Loop number	4
FA number in the active zone	169
Active zone height, mm	1100
Fuel load, t	20,6
Fuel campaign, years	5
Burn-up of unloaded fuel (maximum/ average), % HM.	9,0/5,5


BREST-OD-300

- 1 core;
- 2 block of vessels;
- 3 reactor pit;
- 4 header pipeline;
- 5 core basket;
- 6 cooldown system;
- 7 instrumentation string;
- 8 in-pile refueling machine;
- 9 steam generator;
- 0 upper plate;
- 11 reactor coolant pump;
- 12 SG-MCP block;
- 13 filter.

Fast Reactors under Decommissioning

FFTF, USA

Country	Name	Coolant	Fuel	Purpose	Power, MW(th/e)	Year (Op.)	Status
Eropoo	Phenix	sodium	UO ₂	prototype	590/250	1973	decommissioning
France	Superphenix	sodium	UO ₂	FOAK	3000/1242	1986	decommissioning
Japan	MONJU	sodium	MOX	prototype	714/280	1994	decommissioning
USA	FFTF	sodium	UO ₂	experimental	400/	1980	decommissioning
Kazakhstan Superphenix, France	BN Control PHENIX RICG REACTEUR	Net Resident	UO ₂	prototype	1000/350	1973	decommissioning

BN-350, Kazakhstan

MONJU, Japan

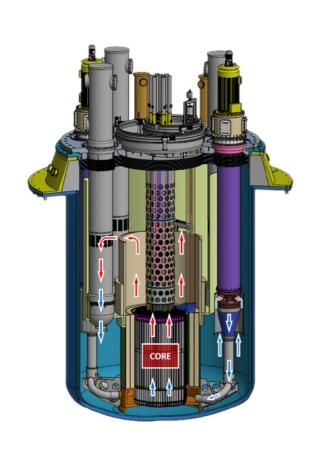
Phenix, France

Innovative SFRs under Development and Design

					IAEA
Country	Name	fuel	Purpose	Power (th/e), MW	Status
Russia	BN-1200	PuN/UN/MOX	Gen-IV, industrial	2900/1220	design
China CFR1200 CiFR1000	CFR1200	MOX	Gen-IV, industrial	2800/1200	design
	U-Pu-Zr Control Rods	Gen-IV, industrial	2800/1000-1200	design	
	ASTRID	Cold plenum	demonstrator	Turbine 500 Objection 0	suspended
France	HEXANA	MOX	SMR prototype	2x400/Flexible	concept
	OTRERA		AMR prototype	295/110	concept
EU	ESFR	MOX, (U,Pu)Zr	Gen-IV prototype	3600/1500	concent
EU	ESFK	MOX, (O,PU)ZI	or AMR	360/150	concept
India	PFBR-2	U-Zr	experimental/SMR	320/100	concept
India	FBR 1&2	MOX Primary sodium (hot)	prototype	1250/500	design
	KALIMER-600		GEN-IV, prototype	1523/600	design
R. of Korea	PGSFR	U-Zr/U-TRU-Zr	GEN-IV, prototype steam g	enerator 400/150	suspended
	SALUS-100		AMR prototype	267/100	design
	NATRIUM	U-Zr	demonstrator	1000/345-500	design
USA	VTR	U-Pu-Zr?	experimental	300/-	design
UJA	ARC-100	U-Zr	demonstrator	260/100	Concept
	Oklo	U-Pu-Zr	demonstrator	/15-50	concept

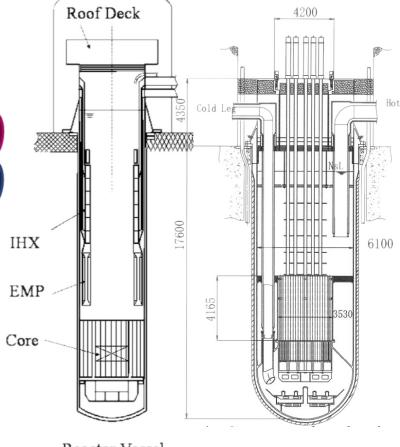
CiFR100

Conceptual design of CiFR1000


CiFR1000 is composed of several fast reactors and one fuel regeneration facility in same plant site. Fuel regeneration facility integrate pyro-processing and metal fuel fabrication line for fuel reprocessing and regeneration.

Parameter	Value
1) Coolant type	Na-Na-H ₂ O
2) Thermal power	2800MWt
3) Electric power	1200MWe
4) Thermal efficiency	>40%
5) Primary loops	4
6) Secondary loops	4
7) Fuel type	Metal Fuel
8) Cladding material	FMC630
9) Breeding ratio	>1.2
10)Maximum fuel burnup	180000MWd/tHM
11) Refueling cycle	>12 months
12) Availability	> 90%
13) Safe Shutdown Earthquake (SSE)	0.3g
14) CDF	<1×10 ⁻⁶
15) LERF	<1×10 ⁻⁷
16) Design life	60 years
17) Construction cycle	60 months

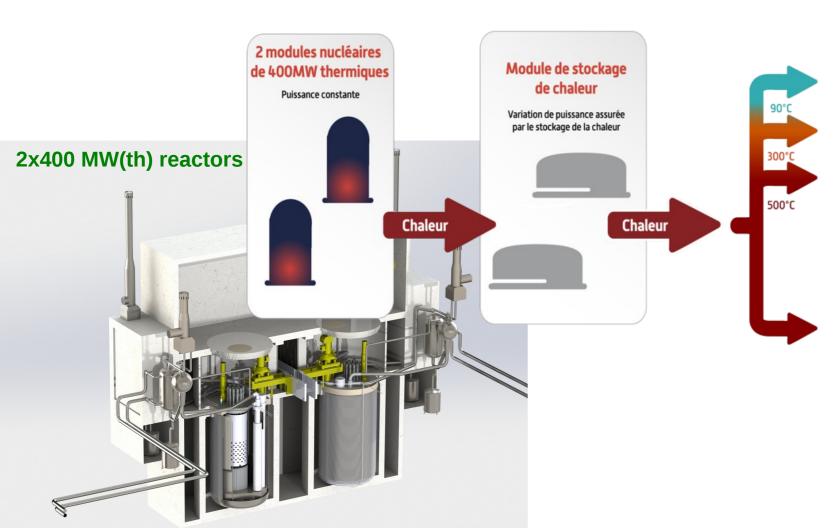
Sodium cooled Fast SMRs (New Designs)

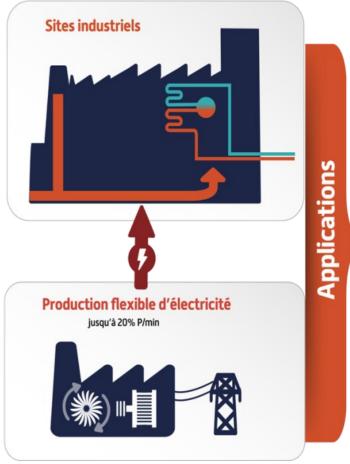

150 MW(e) PGSFR Rep. of Korea

400 MW(th) HEXANA France

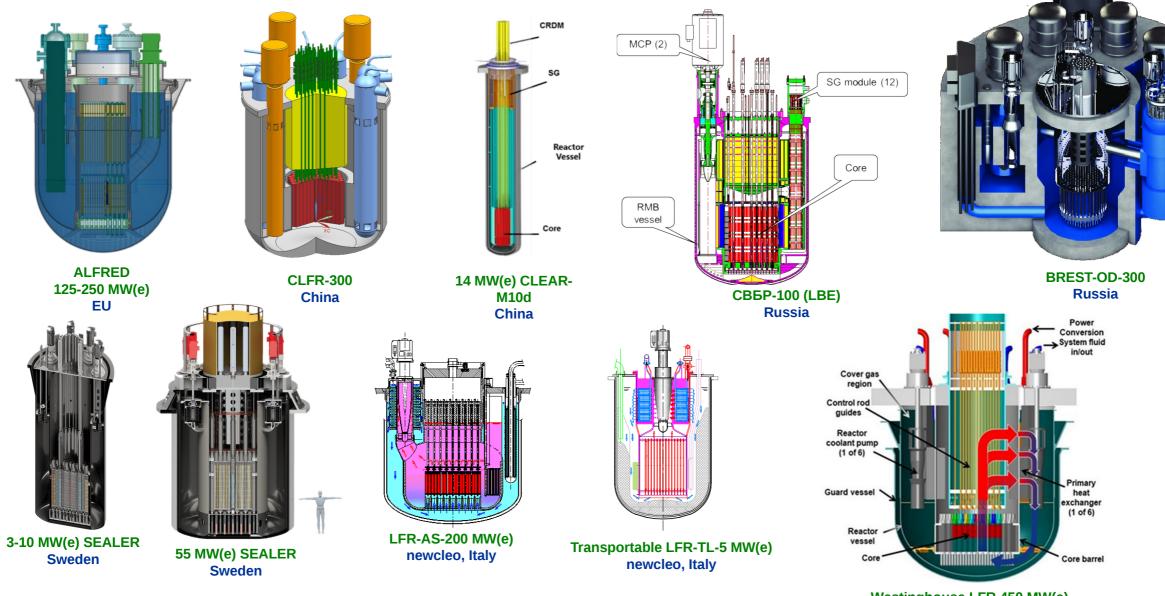
180MW(th) + 110 MW(e) OTRERA France

Reactor Vessel


50 MW(e) SMFR Japan


300 MW(e) SFR Japan

HEXANA: Multi-Purpose SFR


Innovative LFRs under Development and Design

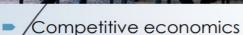
Country	Name	Type	coolant	fuel	Purpose	Power (th/e), MW	Status
Russia	SVBR-100	LFR	LBE	UO ₂	prototype	280/100	design
	CLFR-300	LFR	LBE/Pb		demonstrator	740/300	concept
China	CLEAR-I	LFR	LBE	UO_2	experimental	10/-	design
	CLEAR-M10d	LFR	Pb	UO_2	demonstrator	25/10	concept
Belgium	MYRRHA	LFR ADS	LBE	MOX	experimental	100/-	design
Italy + EU	LFR-AS-30/200 (newcleo)	LFR	Pb	MOX	Experimental /prototype	/30 or /200	concept
Romania /Italy + EU	ALFRED	LFR	Pb	MOX	Gen-IV, industrial	300/120	design
EU	EAGLES-300	LFR	Pb	MOX	Gen-IV, demonstrator	900?/350	concept
Sweden	SEALER-55	LFR	Pb	UN	commercial	140/55	design
USA	Westinghouse LFR	LFR	Pb	MOX	demonstrator	950/450	design
USA	SSTAR	LFR	Pb		experimental	45/20	suspended

Reactor

Heavy Liquid Metal cooled Fast Reactors

Joint Romania-Italy- Belgium EU-SMR-LFR

International collaborations


Collaboration agreement for accelerating the development of LFR technology

EU-SMR-LFR

(re-branding EAGLE-300)

European Industrial
Alliance on SMALL
MODULAR REACTORS

Proven passive safety features

- Sustainable closed fuel cycle
- High temperature heat
- Commercial fleet deployment by 2040

re

Agenzia nazionale per le nuove tecnologie,
'energia e lo sviluppo economico sostenibili

Simplified, robust, modular

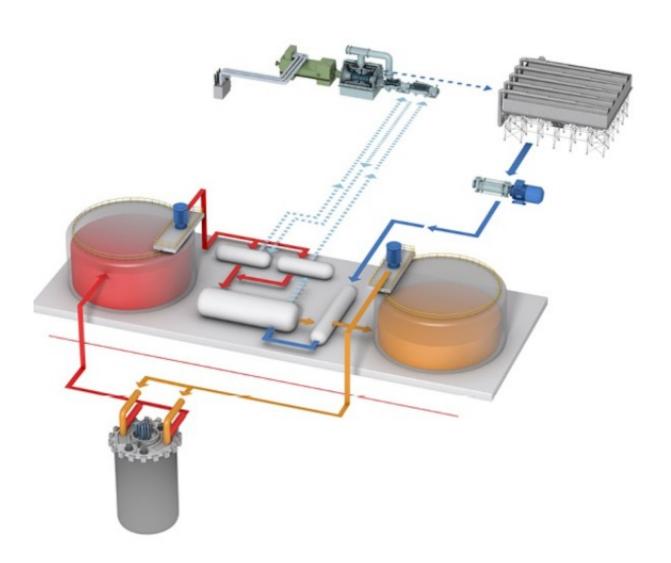
Candidate sites

Mol-Belgium and Pitesti-Romania

Shared roadmap

Jointly owned IP

Eagles Consortium - a newly established alliance which goal is to develop and commercialize EAGLES-300, a next-generation lead-cooled Small Modular Reactor (SMR).


Gen-IV MSRs under Development and Design

							IAL
Country	Name	Туре	coolant	fuel	Purpose	Power (th/e), MW	Status
Canada	SSR-W	MSR	molten salt		demonstration	750/300	demo
	MSFR	MSR	molten salt (LiF-AFn)		Gen-IV, prototype	industrial processes 3000/	concept
France	STELLARIUM	MSR	NaCl		Prototype SMR	250/110	concept
	XS(A)MR (Naarea)	MSR	molten salt		Prototype SMR	80/40	concept
Netherlands /EU	Thorison	MSR	molten salt		Prototype SMR	250/100	concept
Russia	MOSART	«MSR	molten salt		prototype	2400/	concept
USA	MCFR	MSR	NaCl		experimental C	C1 800/800	design
			leactor core	Pump		Generator V Condenser V	

NATRIUM: SFR with Molten Salt Storage System

Designed by Terrapower

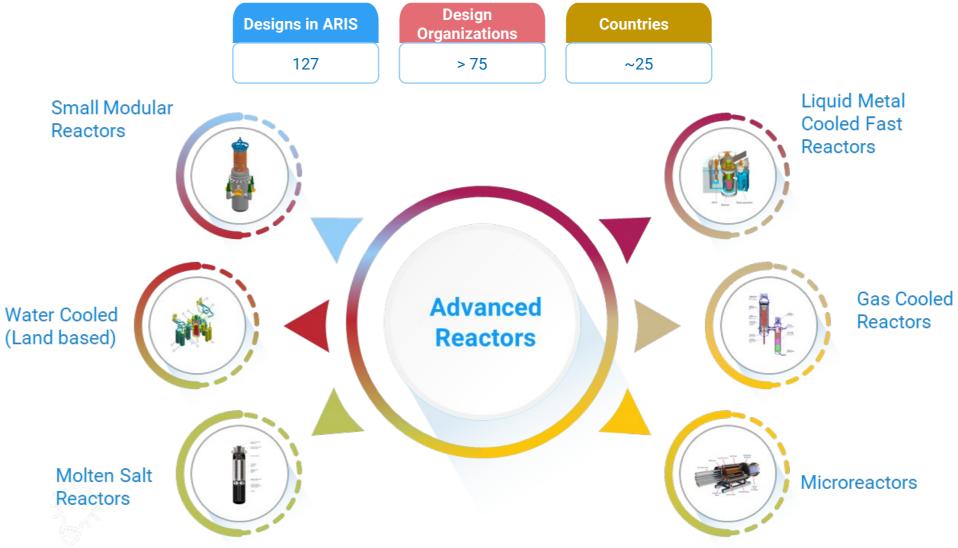
345 MW(e) SFR combined with 1GW(th) Energy molten salt-based storage system

Pick power can boost to 500 MW(e)
Can be used for non-electrical applications
Can work with renewables

Innovative GFRs under Development and Design

Country	Name	Type	coolant	fuel	Purpose	Power (th/e), MW	Status
Japan	KAMADO FBR	GFR 👇	CO ₂	Oxide	demonstrator	3000/1000	Concept
EU	ALLEGRO	GFR	Не	MOX	Gen-IV, demonstrator	75/-	design
USA	EM ²	GFR	Не	UC	demonstrator	500/265	Concept
OOA	FMR	GFR	He	MOX/UF4/ UCO	demonstrator	100/44	Concept
Reactor Core Control Rods AEA WS on Gen-IV Type Si	Reactor Heat Sink	Compressor	Pre Cooler	Heat Sink			

Fast Reactors: World Status and IAEA Resources



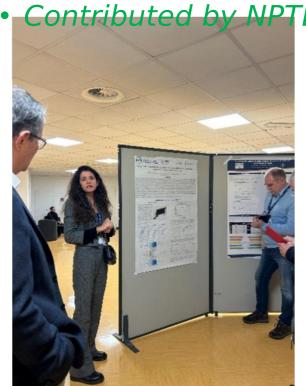
- Fast Reactors: World Status
 - in Operation
 - under Construction
 - in Development
 - IAEA Advanced Reactors Information System (ARIS)
- IAEA Educational and Training Resources for Innovative SMRs
 - Joint ICTP-IAEA Workshops
 - IAEA ONCORE Initiative: Open-Source Nuclear Codes for Reactor Analysis
 - Webinars
 - FR26 International Conference on Fast Reactors and Related Fuel Cycles

Advanced Reactors Information System (ARIS)

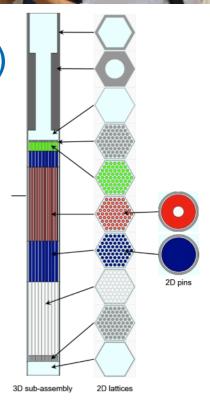
Web accessible database and a tool for Member States at various stages of nuclear power development, offering standardized, impartial data on reactor designs, including evolutionary and innovative concepts, to support informed reactor technology assessments

<u>Access online: Advanced Reactor Information System | Aris</u>

Joint ICTP-IAEA Workshops


Physics and Technology of Innovative Nuclear Energy Systems

 In 2016, 2018, 2022 and 2024, in ICPT Trieste, Italy; next in July 2026

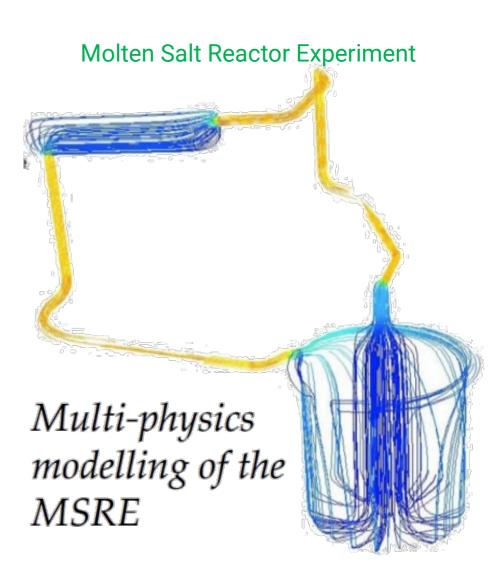

Contributed by NPTDS, INPRO, GIF and external experts

Open-Source Nuclear Codes for Reactor Analysis (2023: IAEA ONCORE Initiative)

- **OpenFOAM** and its derivatives for CFD simulation of multi-physics and multi-scale problems
- **GenFOAM** for core thermal hydraulics, neutron transport and structural mechanics modelling
- **OpenMC** Monte-Carlo neutron transport
- ARMI Advanced Reactor Modelling Interface
- 2nd ONCORE Workshop: 22-26 September 2025:
 - https://indico.ictp.it/event/10868

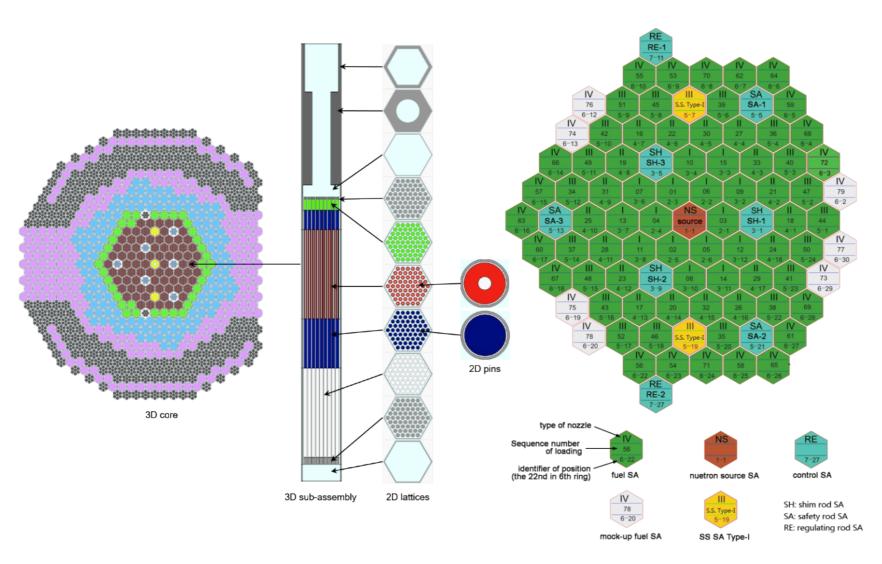
IAEA WS on Gen-IV Type SMRs: FR Status Vladimir Kriventsev, 4 Nov 2025, Moscow

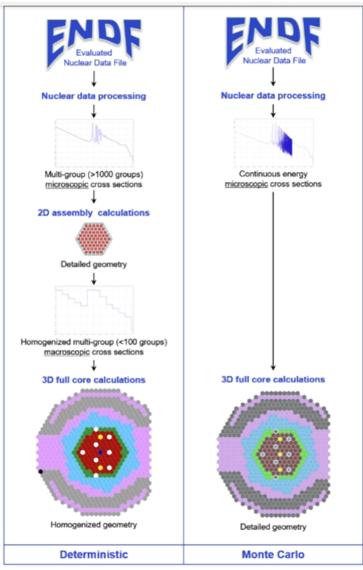
ONCORE Webinar Series on Multiphysics Modelling of Nuclear Reactors using OpenFOAM



The Open Source CFD Toolbox

12 lectures in the series covering:


- Overview of using OpenFOAM as a multi-physics library for nuclear reactor analysis
- Brief introduction to the use of finite-volume methodologies
- Basics of Partial Differential Equations (PDEs)
- Problem definition
- Geometry and mesh generation
- Introduction to OpenFOAM's source code and object-oriented programming
- ContainmentFOAM tool for system-scale CFD analysis of containment atmosphere pressurization, H2/CO mixing and mitigation.
- GeN-Foam tool as multi-physics solver in nuclear reactor design and safety analysis
- OFFBEAT tool, a solver for fuel behavior analysis in nuclear reactors. As a multi-dimensional code, it allows studying the evolution of the fuel in 1-D, 2-D or 3-D, and it can simulate both transient and steady-state conditions.
- GeN-ROM, a data-driven model-order reduction tool for nuclear applications based on GeN-Foam


Recordings of all lectures available here: https://elearning.iaea.org/m2/course/view.php?id=1286

IAEA Training Course Series: Fundamentals of neutronics simulations of a fast reactor based on IAEA's benchmark of CEFR Start-up Tests

IAEA Conferences on Fast Reactors and

Related Fuel Cycles

Proceedings of an International Conference

DG Grossi opens FR22

Mr Bhaduri. FR22 General Chair

FR26 in Beijing

- Hosted by CIAE
- 18 21 May 2026

Atoms for peace and Development...

Thank You!

email: FR@IAEA.ORG