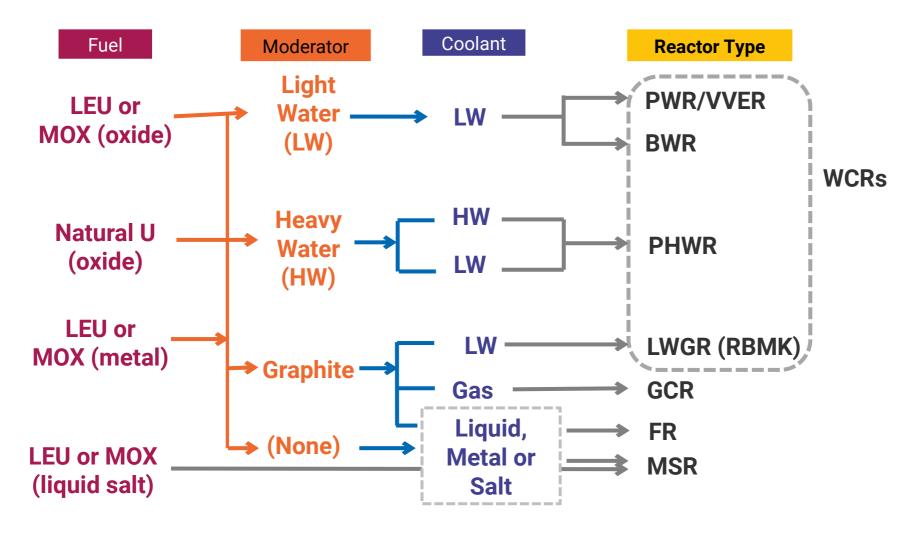

Six Gen-IV Innovative Conceptual Reactor Designs

Vladimir Kriventsev, Nicole Virgili, Panashe Ndlalambi

Fast Reactor Technology Development Team Nuclear Power Technology Development Section Division of Nuclear Power Department of Nuclear Energy International Atomic Energy Agency

IAEA Interregional Workshop on Aspects of Modelling and Simulation in Gen-IV Type SMR Developments, 03-07 November 2025, Moscow



- Innovative Nuclear Reactors and Six Gen-IV Concepts by GIF
 - Reactor Classification and Innovative Nuclear Energy Systems
 - Gen-IV Systems and IAEA Terminology
 - Limitations of Water cooled Reactors?
 - Six Gen-IV Conceptual Designs
 - Super-Critical Water cooled Reactor (SCWR)
 - Very High Temperature Reactor (VHTR)
 - Gas cooled Fast Reactor (GFR)
 - Sodium cooled Fast Reactor (SFR)
 - Lead and LBE cooled Fast Reactor (LFR)
 - Molten Salt cooled Reactor (MSR)
 - Other options: Thorium Fuel Cycle
 - IAEA Advanced Reactors Information System (ARIS)

- Innovative Nuclear Reactors and Six Gen-IV Concepts by GIF
 - Reactor Classification and Innovative Nuclear Energy Systems
 - Gen-IV Systems and IAEA Terminology
 - Limitations of Water cooled Reactors?
 - Six Gen-IV Conceptual Designs
 - Super-Critical Water cooled Reactor (SCWR)
 - Very High Temperature Reactor (VHTR)
 - Gas cooled Fast Reactor (GFR)
 - Sodium cooled Fast Reactor (SFR)
 - Lead and LBE cooled Fast Reactor (LFR)
 - Molten Salt cooled Reactor (MSR)
 - Other options: Thorium Fuel Cycle
 - IAEA Advanced Reactors Information System (ARIS)

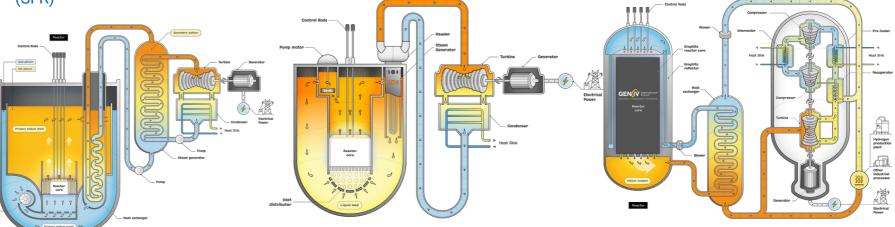
Nuclear Power Reactor Classifications

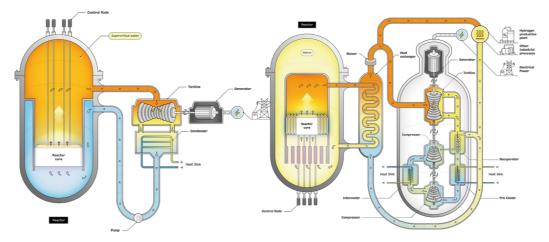
MOX: mixed-oxide containing any combination of U, Pu and Th

Innovative Reactors (Gen-IV)

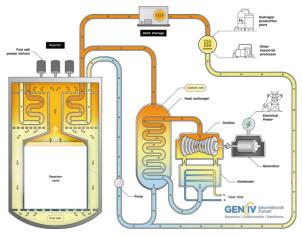
Innovative Reactor:

Advanced design which incorporates conceptual changes in design approaches or system configuration in comparison with existing practice. Substantial R&D, feasibility tests, and possibly a prototype or demonstration reactor are required prior to deployment.


 Early Prototypes and Demonstration Plants Gen-I


- Current Fleet Gen-II/III
- Advanced Nuclear Reactors
 - Evolutionary designs Gen-III and Gen-III+
 - Innovative designs Gen-IV
 - SMRs can be either evolutionary or innovative
- Innovative SMR
 Advanced Modular Reactor (AMR)

Sodium cooled Fast Reactor (SFR)


Lead cooled Fast Reactor (LFR)

Very-High-Temperature Reactor (VHTR)

Supercritical Water cooled Reactor (SCWR) Gas cooled Fast Reactor (GFR)

Molten Salt Reactor (MSR)

Source: GIF homepage (www.gen-4.org)

Experimental Breeder Reactor (EBR-I)

WORLD'S FIRST HUCLEAR POWER PLANT

First Electricity Generated from Nuclear Reactor

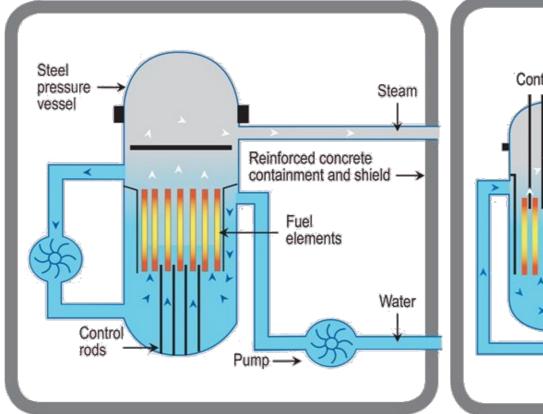
- First ever liquid metal cooled fast reactor built by Argonne National Laboratory (ANL) West (now Idaho National Laboratory (INL))
- The primary purpose of EBR-I is to demonstrate breeding of fissile material
- Coolant: NaK Eutectic Alloy, Fuel: Metallic Uranium
- On 20 December, 1951, EBR-I generated first usable electricity to power four light bulbs
- Later, EBR-I continued to supply 200 kW to power its own building
- Reactor operated for 12 years before its final shutdown in 1953

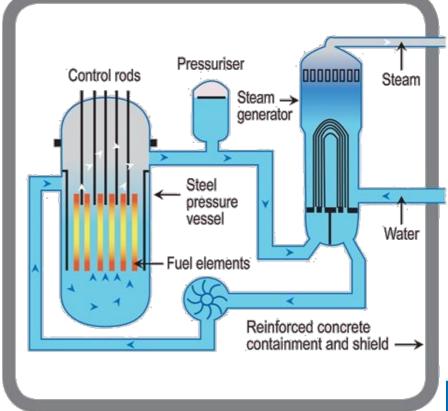
- Innovative Nuclear Reactors and Six Gen-IV Concepts by GIF
 - Reactor Classification and Innovative Nuclear Energy Systems
 - Gen-IV Systems and IAEA Terminology
 - Limitations of Water cooled Reactors?
 - Six Gen-IV Conceptual Designs
 - Super-Critical Water cooled Reactor (SCWR)
 - Very High Temperature Reactor (VHTR)
 - Gas cooled Fast Reactor (GFR)
 - Sodium cooled Fast Reactor (SFR)
 - Lead and LBE cooled Fast Reactor (LFR)
 - Molten Salt cooled Reactor (MSR)
 - Other options: Thorium Fuel Cycle
 - IAEA Advanced Reactors Information System (ARIS)

GIF: Gen-IV Nuclear Energy Systems Goals

Generation IV nuclear energy systems will...

Sustainability-1	Provide long-term availability of systems and effective fuel utilization					
Sustainability-2	Minimise the volume and the half-life of nuclear waste					
Economics-1	Present a clear life-cycle cost advantage over other energy sources					
Economics-2	Have a comparable level of financial risk vs. other energy projects					
Safety and Reliability-1	Be operated safely and reliably					
Safety and Reliability-2	Have a very low likelihood and degree of reactor core damage					
Safety and Reliability-3	Eliminate the need for offsite emergency response					
Proliferation Resistance and Physical Protection	Limit proliferation by being the least desirable route for diversion or theft of weapons-usable materials					

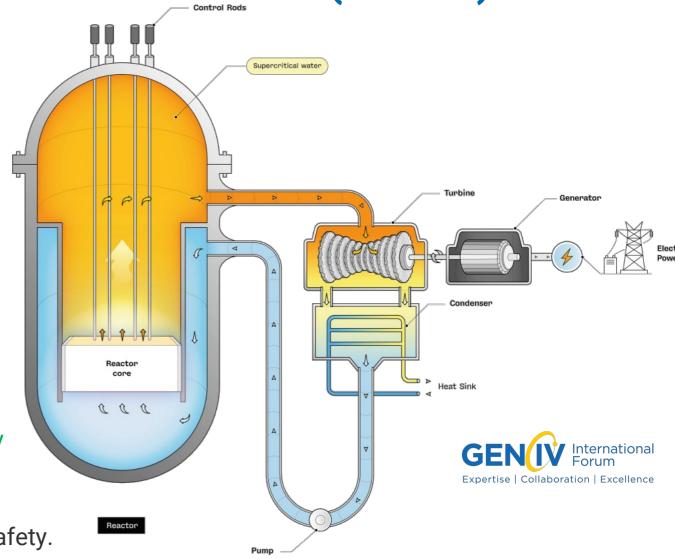



- Innovative Nuclear Reactors and Six Gen-IV Concepts by GIF
 - Reactor Classification and Innovative Nuclear Energy Systems
 - Gen-IV Systems and IAEA Terminology
 - Limitations of Water cooled Reactors?
 - Six Gen-IV Conceptual Designs
 - Super-Critical Water cooled Reactor (SCWR)
 - Very High Temperature Reactor (VHTR)
 - Gas cooled Fast Reactor (GFR)
 - Sodium cooled Fast Reactor (SFR)
 - Lead and LBE cooled Fast Reactor (LFR)
 - Molten Salt cooled Reactor (MSR)
 - Other options: Thorium Fuel Cycle
 - IAEA Advanced Reactors Information System (ARIS)

Water Cooled Reactors: Why are we unsatisfied?

	WCR
coolant	H_2O/D_2O
outlet T, C	288-329
efficiency, %	35
max P, MPa	7-17
spectrum	thermal

- Mature Technology
- Low T => Low Efficiency
- High Pressure => safety issues
- Only thermal spectrum => not sustainable

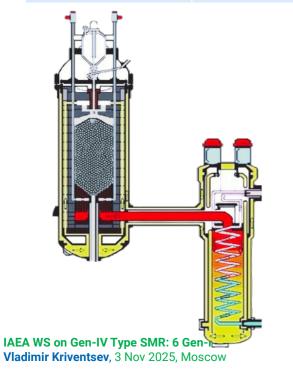


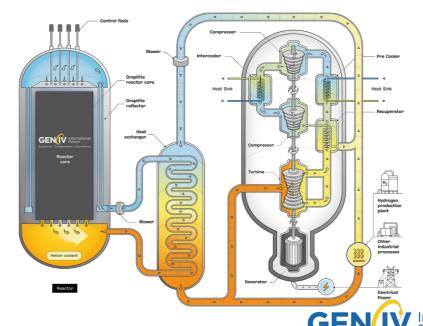
- Innovative Nuclear Reactors and Six Gen-IV Concepts by GIF
 - Reactor Classification and Innovative Nuclear Energy Systems
 - Gen-IV Systems and IAEA Terminology
 - Limitations of Water cooled Reactors?
 - Six Gen-IV Conceptual Designs
 - Super-Critical Water cooled Reactor (SCWR)
 - Very High Temperature Reactor (VHTR)
 - Gas cooled Fast Reactor (GFR)
 - Sodium cooled Fast Reactor (SFR)
 - Lead and LBE cooled Fast Reactor (LFR)
 - Molten Salt cooled Reactor (MSR)
 - Other options: Thorium Fuel Cycle
 - IAEA Advanced Reactors Information System (ARIS)

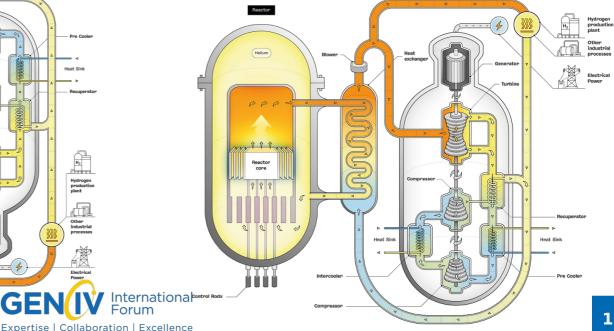
Super-Critical Water cooled Reactors (SCWR)

	WCR	SCWR	
coolant	H ₂ O	H ₂ O	
outlet T, C	288-329	500	
efficiency, %	35	45	
max P, MPa	17	25	
spectrum	thermal	thermal/fast	

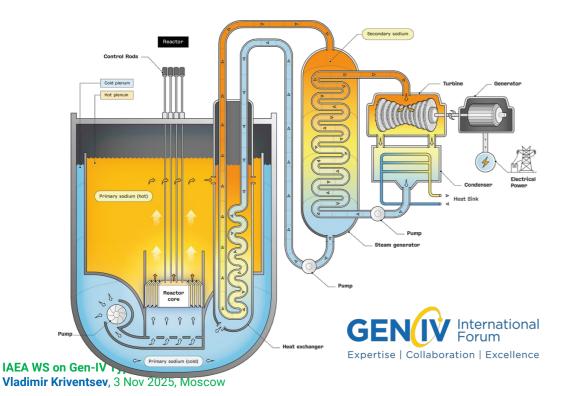
- Use water above critical point (22.12MPa and 647.14 K) as coolant.
- The high outlet temperature increases efficiency
- Potential for fast neutron spectrum in some designs.
- High Pressure -> increased costs for ensuring safety.
- Known technology for gas and coal plants but no experience in nuclear reactors.




Gas cooled Reactors (HTGR - VHTR, GFR)


	WCR	SCWR	HTGR	GFR
coolant	H ₂ O		Не	He
outlet T, C	288-329	500	750	750
efficiency, %	35		50	50
max P, MPa	17	25	7	7
spectrum	thermal		thermal	fast

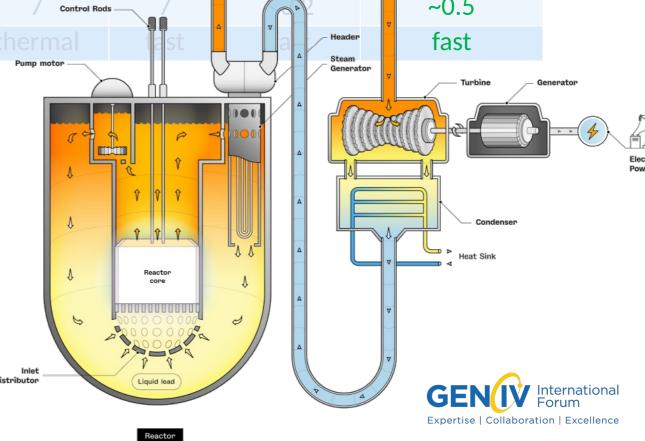
- The high temperature enables non-electric industrial applications
- Extended experience in gas and coal power plants but limited experience in nuclear
- GFR design allows for fast spectrum
- Low Voiding Reactivity



Sodium cooled Fast Reactors

	WCR	SCWR		GFR	SFR
coolant	H ₂ O				Na
outlet T, C	288-329	500	750	750	550
efficiency, %	35				45
max P, MPa	17	25	7	7	~0.2
spectrum	thermal				fast
efficiency, % max P, MPa	35 17	45 25	50 7	50 7	45 ~0.2

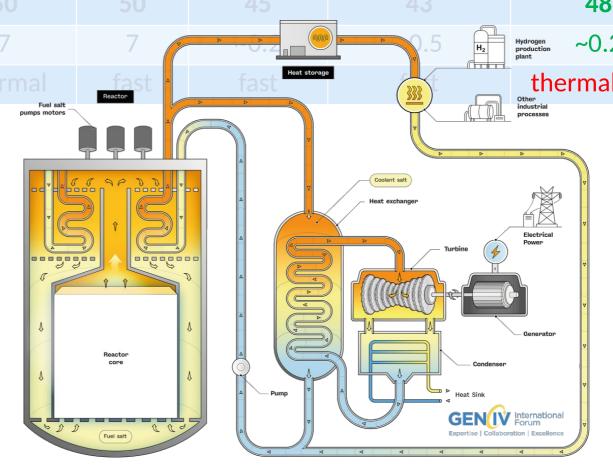
EBR-I 1951



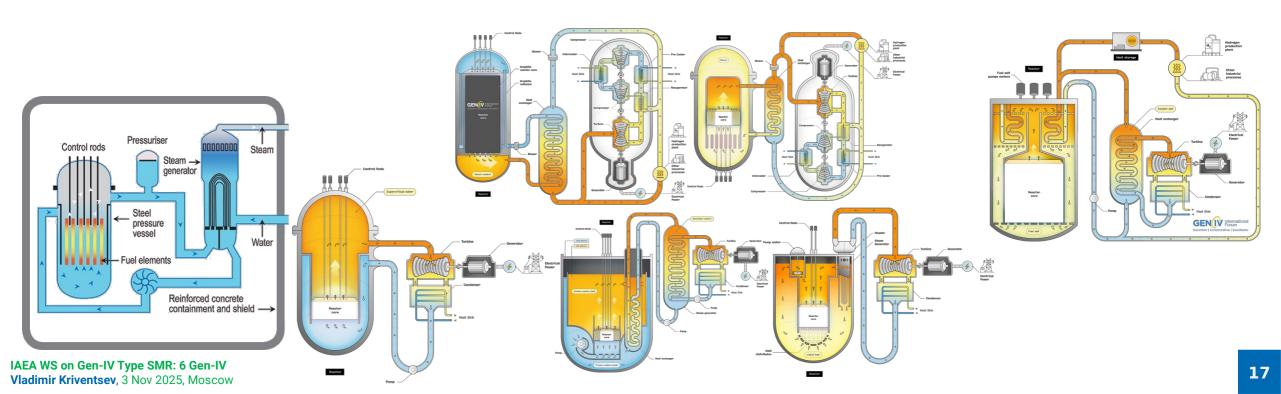
- Hight coolant T => High Efficiency
- Low Pressure
- Mature Technology
- Fast spectrum
- Sodium violently reacts with water and air

Heavy Liquid Metal cooled Fast Reactors

	WCR	SCWR	HTGR	GFR	SFR	LFR
coolant	H ₂ O					Pb/LBE
outlet T, C	288-329	500	750	750	550	500
efficiency, %	35			50	A P P	43
max P, MPa	17	25	Control Rods	7		~0.5
spectrum	thermal			last	Header	fast
spectrum	uicillai		Pump motor	1031	A Steam Generator	


- No intermediate circuit
- Hight coolant T => High Efficiency
- Low Pressure
- Fast spectrum
- New Technology
- Compatibility of Materials
- Pb/LBE O₂ Control

Molten Salt Reactors

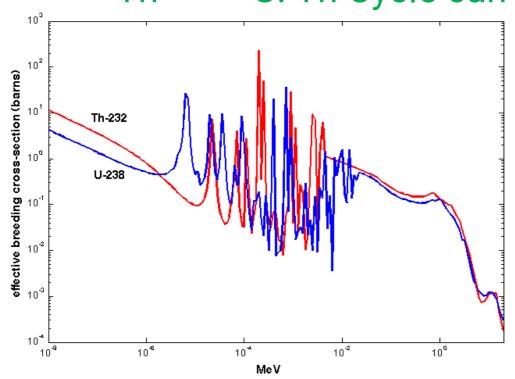

	WCR	SCWR	HTGR	GFR	SFR	LFR	MSR
coolant	H ₂ O						Fluoride/Chloride
outlet T, C	288-329	500	750	750	550	500	800
efficiency, %	35				45	43	48
max P, MPa	17	25	7	7		D D H ₂	Hydrogen production plant ~0.2
spectrum	thermal		thermal	Reactor	Heat storage		thermal/fast
			Fuel salt pumps motors	4			industrial processes

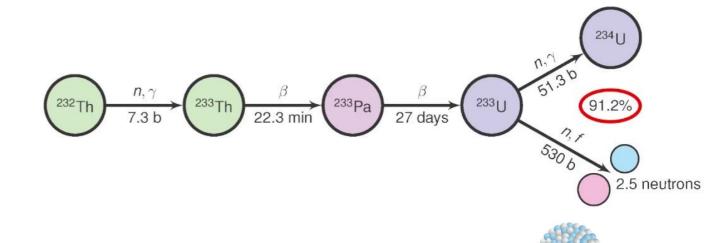
- Hight coolant T => High Efficiency
- Low Pressure
- Very safe (negative temperature reactivity)
- Online Waste/Fuel Management
- Thermal/Fast spectrum
- New Technology
- Compatibility of Materials

Comparing Innovative Reactor Concepts

	WCR	SCWR	HTGR	GFR	SFR	LFR	MSR
coolant	H ₂ O	H ₂ O	He	He	Na	Pb/LBE	Fluoride/Chloride
outlet T, C	288-329	500	750	750	550	500	800
efficiency, %	35	45	50	50	45	43	48
max P, MPa	17	25	7	7	~0.2	~0.5	~0.2
spectrum	thermal	thermal/fast	thermal	fast	fast	fast	thermal/fast

Innovative Reactors: Coolant Properties & More


	WCR	SCWR	HTGR	GFR	SFR	LFR	MSR
coolant	H ₂ O	H ₂ O	He	Не	Na	Pb/LBE	Fluoride/Chloride
outlet T, C	329	500	750	750	550	500	800
max P, MPa	17	25	7	7	0.2	0.5	0.2
, kg/m³	700	800/90	0.12/8.5		830	10000	3200
, kJ/kg/K	5.7	5/4	5.2/	5.2	1.3	0.15	1.4
, MJ/m³/K	4	0.35	6x10 ⁻⁴ /0.4		1	1.5	4.5
k, W/m/K	0.6	0.1 - 0.4	0.15/0.24		70	18	0.01
boiling T, C	350				880	1700	1700
melting T, C					98	327/125	~500
CMI ¹	ok	ok	good	good	ok	?	?
enrichment, %	<5	<5/<20	<5	<20	<20	<20	<5/<20



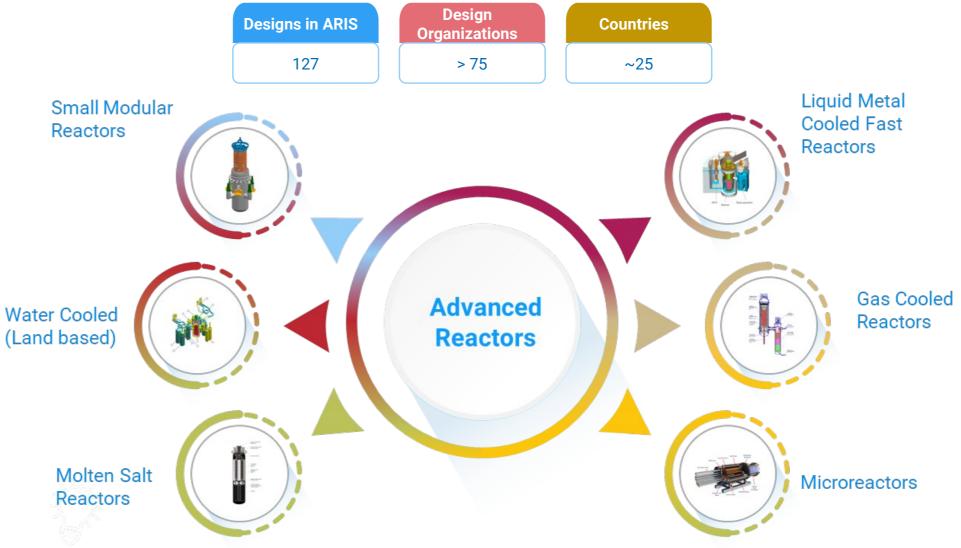
- Innovative Nuclear Reactors and Six Gen-IV Concepts by GIF
 - Reactor Classification and Innovative Nuclear Energy Systems
 - Gen-IV Systems and IAEA Terminology
 - Limitations of Water cooled Reactors?
 - Six Gen-IV Conceptual Designs
 - Super-Critical Water cooled Reactor (SCWR)
 - Very High Temperature Reactor (VHTR)
 - Gas cooled Fast Reactor (GFR)
 - Sodium cooled Fast Reactor (SFR)
 - Lead and LBE cooled Fast Reactor (LFR)
 - Molten Salt cooled Reactor (MSR)
 - Other options: Thorium Fuel Cycle
 - IAEA Advanced Reactors Information System (ARIS)

Thorium Fuel Cycle

²³²Th >> ²³³U: Th Cycle can operate in thermal spectrum

Absorption of neutrons by ²³²Th initiates the series of transformations leading to the production of fissile ²³³U that is by far the best 'fissile' isotope for thermal neutron spectrum and can be used for breeding in both thermal and fast reactors.

See IAEA e-Learning Module on Thorium-Cycle-Based
Reactors



- Innovative Nuclear Reactors and Six Gen-IV Concepts by GIF
 - Reactor Classification and Innovative Nuclear Energy Systems
 - Gen-IV Systems and IAEA Terminology
 - Limitations of Water cooled Reactors?
 - Six Gen-IV Conceptual Designs
 - Super-Critical Water cooled Reactor (SCWR)
 - Very High Temperature Reactor (VHTR)
 - Gas cooled Fast Reactor (GFR
 - Sodium cooled Fast Reactor (SFR)
 - Lead and LBE cooled Fast Reactor (LFR)
 - Molten Salt cooled Reactor (MSR)
 - Other options: Thorium Fuel Cycle
 - IAEA Advanced Reactors Information System (ARIS)

Advanced Reactors Information System (ARIS)

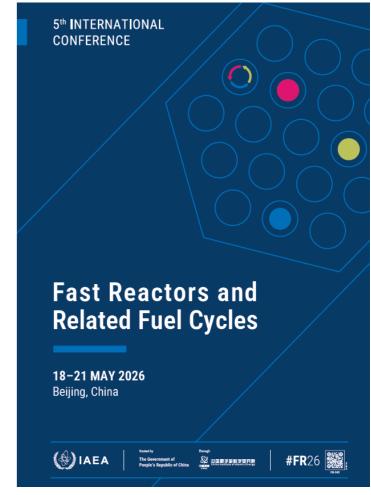
Web accessible database and a tool for Member States at various stages of nuclear power development, offering standardized, impartial data on reactor designs, including evolutionary and innovative concepts, to support informed reactor technology assessments

<u>Access online: Advanced Reactor Information System | Aris</u>

IAEA Conferences on Fast Reactors and

Related Fuel Cycles

DG Grossi opens FR22


🚜 中国国家原子能机构

② 中国原子能科学研究院

(A) IAEA

Mr Bhaduri. FR22 General Chair

FR26 in Beijing

- Hosted by CIAE
- 18 21 May 2026

Atoms for peace and Development...

Thank You!

email: FR@IAEA.ORG