

Differential cross-section measurement of the ¹⁴N(n, p)¹⁴C reaction in the 0.1-6.0 MeV energy region

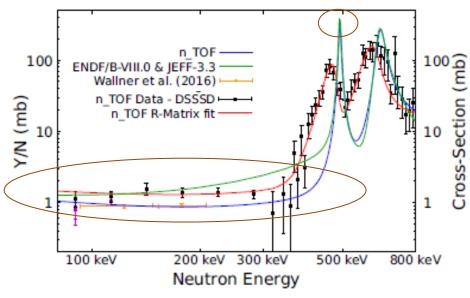
Wei Jiang, Qiuyue Luo, Ruirui Fan, Kang Sun, et al.

Institute of high energy physics, Chinese Academy of Sciences Spallation Neutron Source Science Center

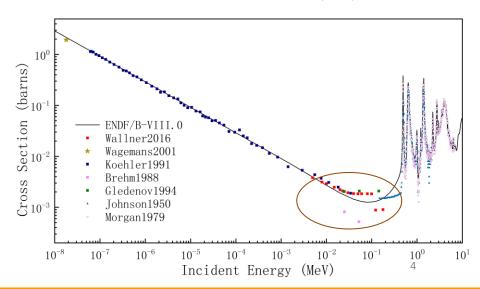
Content

- Motivation and Background
- > Experimental Setup
- Data Analysis
 - Data Processing
 - R-Matrix Fitting
- Preliminary Results
- > Conclusion

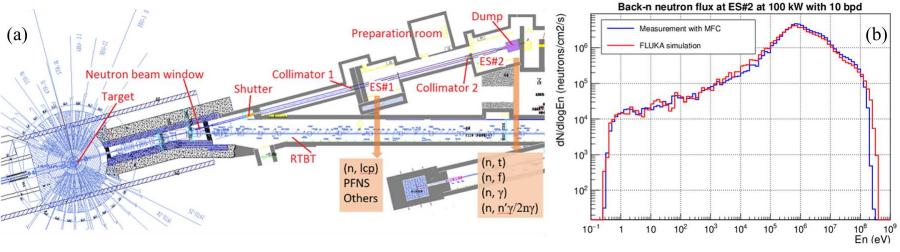
Motivation and Background

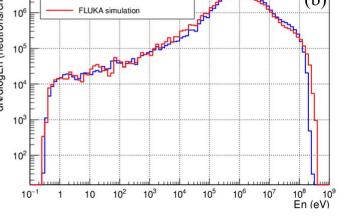

 $^{14}N(n, p)^{14}C$ reaction:

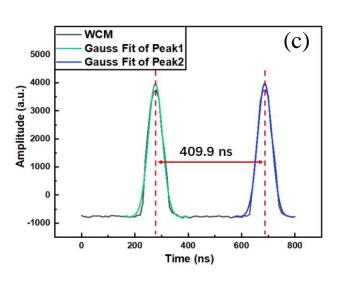
- 1. Understanding of cosmic-ray physics and nucleosynthesis.
- 2. The development and refinement of nuclear reaction theory models.
- 3. Neutron-based medical therapy.


Motivation and Background

- Wallner, et al (2016): Suggest that the cross section of the resonance at 493 keV should be ~3.3 lower than Morgan's (1979) experimental results.
- Pablo Torres-Sánchez (2023): With SAMMY fitting, the cross section at 493 keV is consistent with the ENDF/B-VIII.0 evaluations.
- Pablo Torres-Sánchez (2023): The low-energy tail(100-480 keV) of the resonance at ~490 keV is lower than the ENDF/B-VIII.0 evaluation, where there are disagreements among existing experimental results.
- From 800 keV to 2.5 MeV, some resonances are present in the JENDL-5.0 but not in the ENDF/B-VIII.1.
- There is a lack of differential cross section for the $^{14}N(n, p)^{14}C$ reaction in the entire energy range.

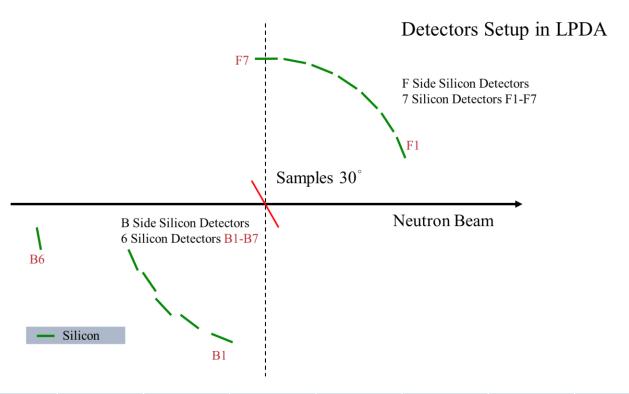

Get from PHYSICAL REVIEW C 107, 064617 (2023)


CSNS Back-n white neutron facility


- The China Spallation Neutron Source Back-n white neutron facility in DongGuan, south China.
- Pulse neutron beam; Energy range: 0.3 eV-300 MeV(with Gd absorber in the beamline)
- Time interval between two pulses: 40 ms (25 Hz)
- Double bunches; Pulse width: 60 ns (FWHM).

CSNS Back-n white neutron facility

Back-n's energy spectrum



Double-bunch structure

Experimental Setup

■ 13 Si-PIN detectors

Beam spot's diameter at sample: ~14mm

Detector	F1	F2	F 3	F4	F5	F6	F7	B1	B2	В3	B4	B5	В6
Angle(°)	21.4	32.86	44.29	55.71	67.14	78.57	90	105	121.32	133.88	146.41	158.74	170
D(mm)	189.5	189.5	189.5	189.5	189.5	189.5	189.5	193	195.61	202.73	193.75	204.64	360

Experiment Setup

- 1# 241 Am+ 244 Cm: standard α source for energy calibration;
- **2**# Al: 10.8 μm thick Al substrate for background measurement;
- 3# $Al+C_3H_6N_6$: Double-sided target, with a single side $C_3H_6N_6$ of 200 μg/cm², deposited on a 10.8 μm Al substrate; Diameter 6 cm.

(We also have tried BN target, but failed with the target.)

- 4# Al+⁶LiF: Single-sided target, 360 μg/cm², deposited on a 10 μm Al substrate;
 - For reference measurement

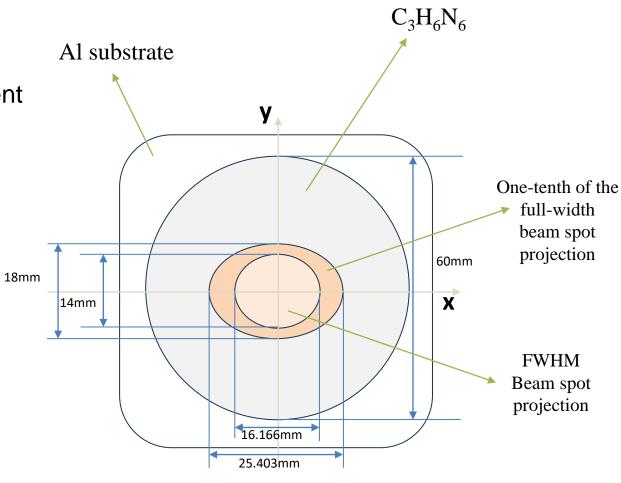
2

3

1

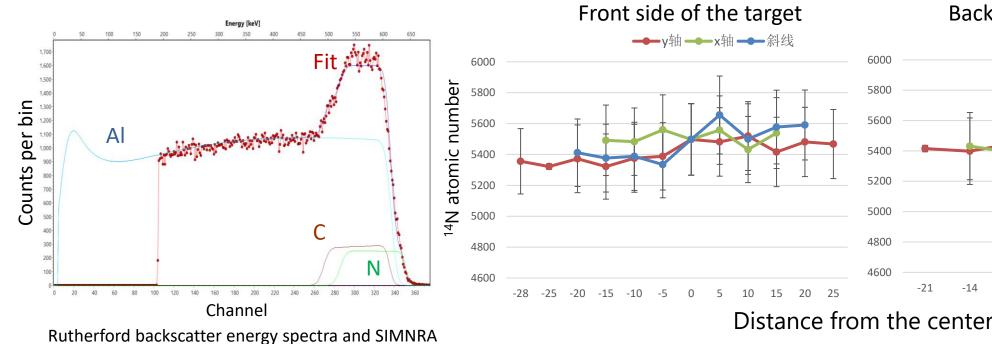
Target thickness and uniformity measurement-C₃H₆N₆

Rutherford backscatter experiment


Conducted at Peking University, 0.85 MeV protons

Number/percentage of atoms of ¹⁴N at 44 measurement

points in both side of the target


Sample for Rutherford backscatter (Cropped $C_3H_6N_6$ target)

Schematic diagram of C₃H₆N₆ target

Target thickness and uniformity measurement-C₃H₆N₆

Back side of the target

Distance from the center (cm)

Fitted ¹⁴N atomic number thickness (10¹⁵ atoms/cm²)

	Atomic number thickness (10 ¹⁵ atoms/cm²)	Proportion of ^{14}N atoms in $C_3H_6N_6$	¹⁴ N atomic number thickness (10 ¹⁵ atoms/cm ²)
Nominal	14300	0.4	5720
Front side	14377.68	0.38	5468.78 ± 43.08
Back side	14352.94	0.38	5416.88 ± 62.22

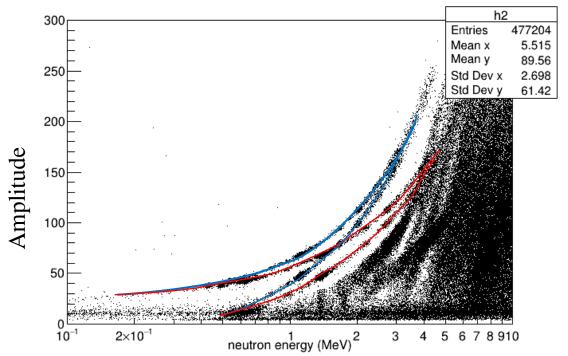
fitting of each element at the measurement point

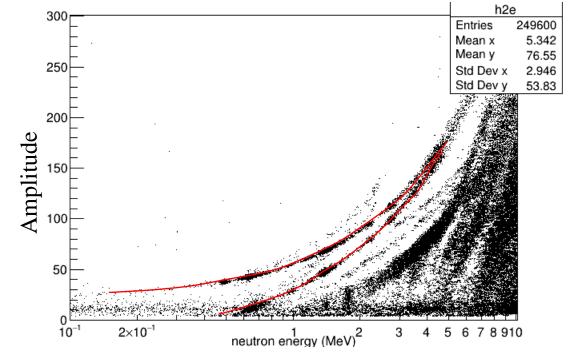
Conclusion: The C₃H₆N₆ target has good uniformity within uncertainty.

28

21

Data Processing

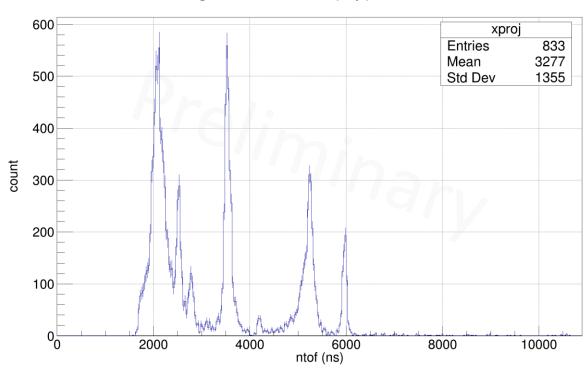

- 1# 2D spectra of Amplitude vs E_n
 - Energy calibration
 - TOF calibration
- 2# Double bunch unfolding
- 3# Subtracting the background
- **4#** Selecting event
 - Event count
 - 1D histogram of count vs. neutron energy


- 5# Relative differential cross sections of ¹⁴N(n, p)
 - Referring to the standard cross sections of ⁶Li(n,t)
 - Uncertainty analysis
- 6# Fitting with Legendre polynomial
 - Angular distribution of differential cross sections
 - Angle-integrated cross sections
- 7# R-Matrix Fitting

Double Bunch Unfolding

- Double bunch: the events outlined in red are produced from the first bunch while the ones in green are from the second bunch.
 - e s in
- \blacksquare Al+C₃H₆N₆: **Double-sided** target
- * With TOF calibration already done

Amplitude vs E_n spectrum (133.88°)


Before unfolding

After unfolding

Counts of selected events ($^{14}N(n, p)^{14}C$)

average count of 14N(n,p) ChannelID=5

hEnrate11 dN/dlog10E_n(neutrons/cm²/s) 10 10^{-1} 10^{-1} 10^4 **10** Neutron Energy(eV)

(*The background from Al has been subtracted)

The energy spectrum of Back-n ES#1

When TOF of neutron is longer than \sim 3800 ns (E_n lower than \sim 1.3 MeV), the protons are only from the side facing forward.

Cross sections calculation

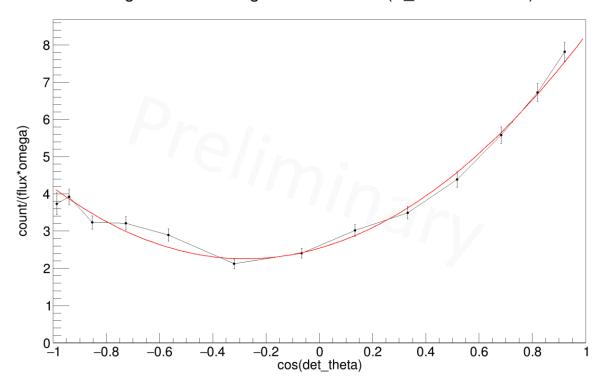
$$\frac{d\sigma}{d\Omega}|_{E_n} = \frac{count(E_n)}{N_n(E_n) \cdot N_{target} \cdot \Omega_{\text{det}} \cdot \epsilon_{\text{det}}} = k_{\text{det}} \cdot \frac{count(E_n)}{N_n(E_n) \cdot N_{target}}$$
(1)

- $count(E_n)$: count of proton at E_n
- $N_n(E_n)$: the number of the incident neutrons whose energy is equal to E_n , $\propto \text{flux}_{E_n} \times \text{proton}(t)$
- N_{target} : the number of target nuclei
- Ω_{det} , ϵ_{det} : the solid angle and the detecting efficiency of the detectors
- The cross section of 6 Li(n, t) α is standard and isotropic.
- The relative differential cross section of $^{14}N(n, p)^{14}C$ "normalization coefficient"

$$\frac{d\sigma}{d\Omega}(n14)|_{E_n} = \frac{k_{N14}}{k_{Li6}} \cdot \frac{count(n14)_{E_n}}{flux_{E_n}} \times \frac{d\sigma}{d\Omega}(Li6)|_{E_i} / \frac{count(Li)_{E_i}}{flux_{E_i}} - \frac{k_{N14}}{k_{Li6}} = \frac{Nproton(^6\text{LiF})}{Nproton(^{14}\text{N})} \times \frac{Ntarget(^6\text{Li})}{Ntarget(^{14}\text{N})} \qquad \text{from dataset} \qquad \text{measurement of } ^6\text{Li(n, t)}\alpha$$

Cross sections of ⁶Li(n, t)⁴He

- For differential cross section (measurement):
 - Fit it with Legendre Polynomials

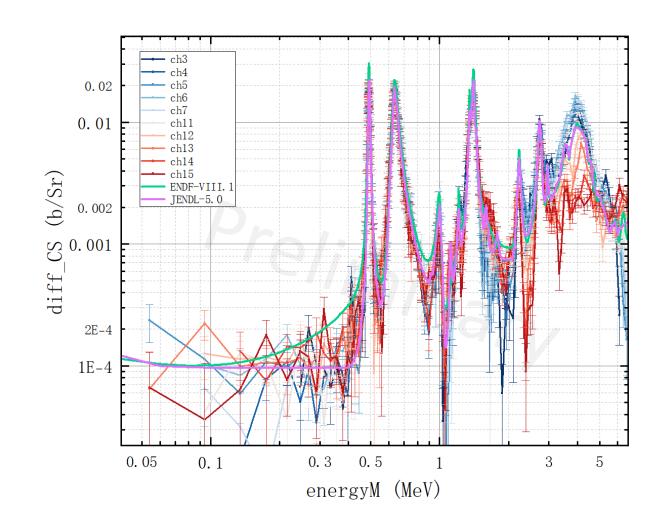

$$\frac{d\sigma}{d\Omega}(E,\cos\theta)$$

$$=\frac{\sigma_{n,x}(E)}{4\pi}\sum_{l=0}^{L}(2l+1)f_l(E)P_l(\cos\theta)$$

$$= \sum_{l=0}^{L} A_l P_l(\cos \theta) \qquad (3)$$

- For cross-section (unnormalized)
 - Integrate the fitting Legendre Polynomials along cos(det_theta)
 - Integral: $\sigma_{n,x}(E) = \int_{-1}^{1} 2\pi \frac{d\sigma}{d\Omega}(E, \cos\theta) d\cos\theta$ (4)

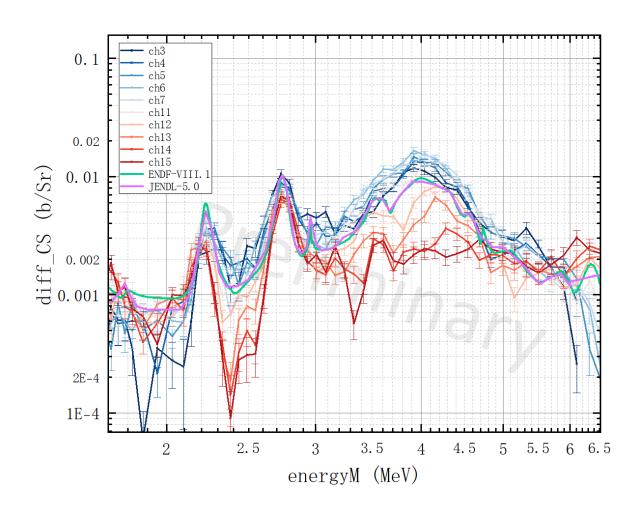
Legendre Fit of Angular Distribution (E_n=0.2023 MeV)



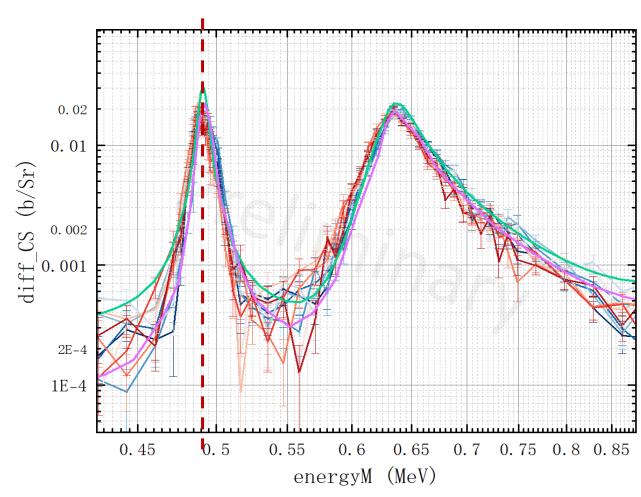
The differential cross sections of $^{14}N(n, p)^{14}C$

Range of neutron energy:

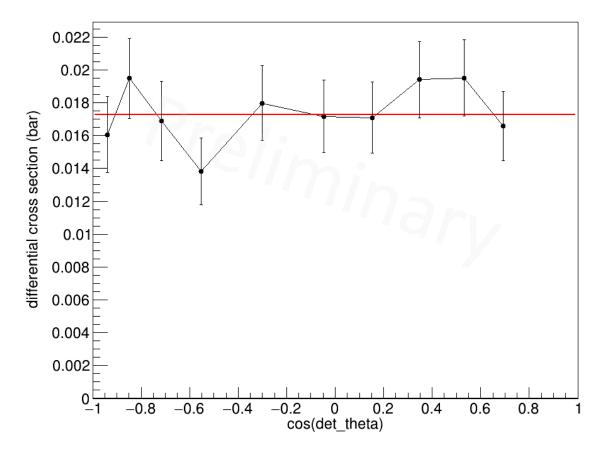
- Resonance at 0.491 ± 0.005 MeV
 - JENDL-5.0: 0.4927 MeV
 - ENDF/B-VIII.1: 0.491 MeV
- Resonance at 0.6344 ± 0.0075 MeV
 - JEDNL-5.0: 0.6351 MeV
 - ENDF/B-VIII.1: 0.635 MeV

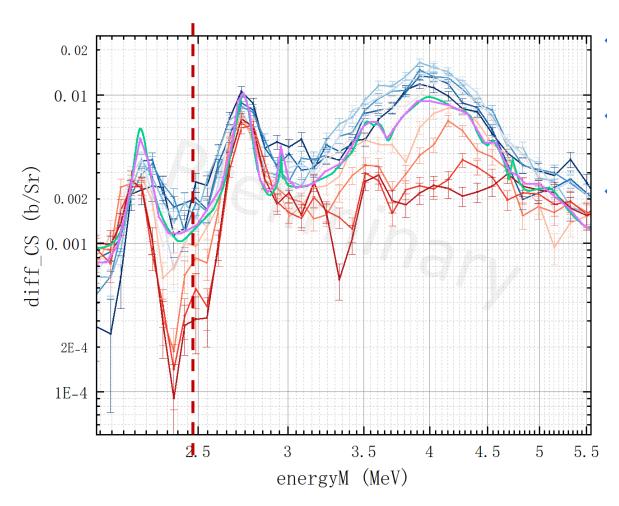

^{*} in LAB frame

The differential cross sections of $^{14}N(n, p)^{14}C$

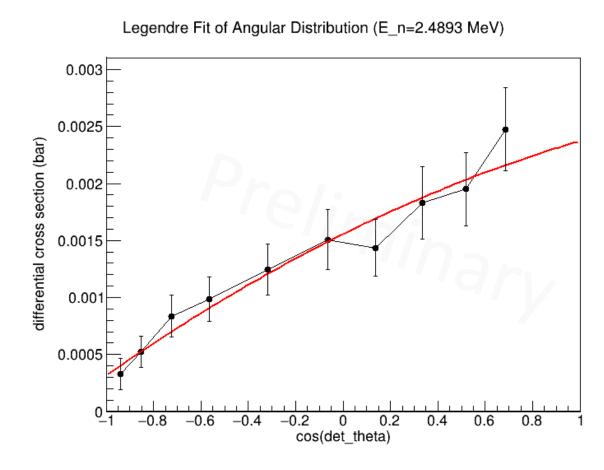

Angular distribution of the measured differential cross section :

- 2.2~2.8 MeV, 3~5 MeV
- the total momentum of ¹⁵N excited states: $J > \frac{3}{2}$
- Contribute to evaluation J and π of excited states

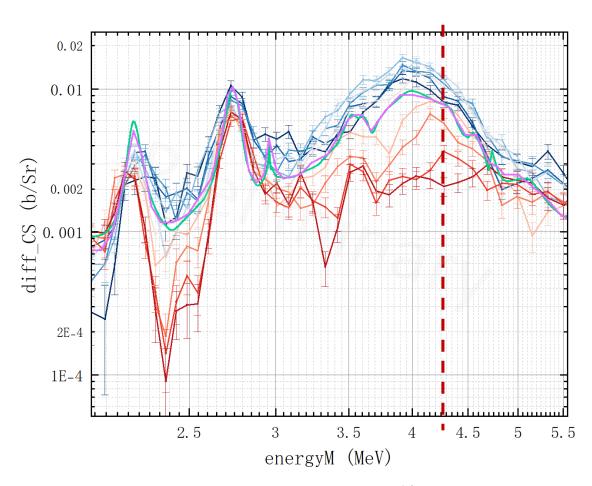

Fitting with Legendre Polynomials——Angular Distribution


Differential cross sections of ¹⁴N(n, p)

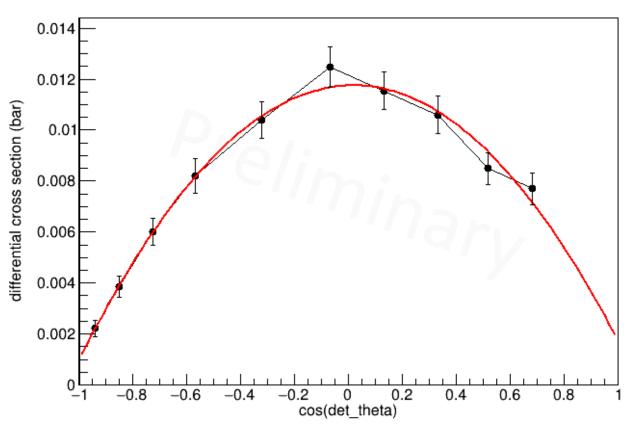
Legendre Fit of Angular Distribution (E_n=0.4911 MeV)



Angular distribution of differential cross sections (0.491MeV)

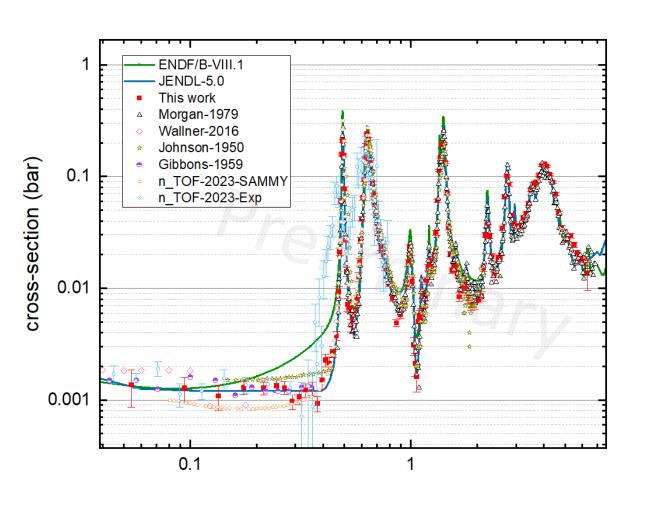


Differential cross sections of ¹⁴N(n,p)



Angular distribution of differential cross sections (2.4893MeV)

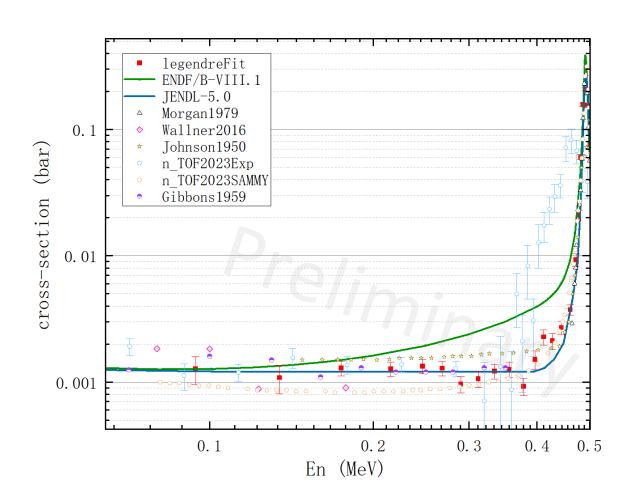
Legendre Fit of Angular Distribution (E_n=4.2777 MeV)



Differential cross sections of ¹⁴N(n, p)

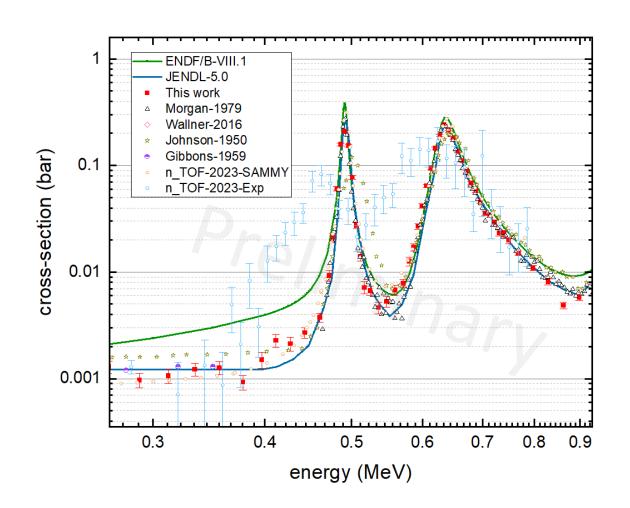
Angular distribution of differential cross sections (4.2777MeV)

Angle-integrated cross sections



- $E_n : 0.05-6 \text{ MeV}$
- Angle-integrated
- Uncertainty of cross sections: <5% at resonance

Angle-integrated cross section



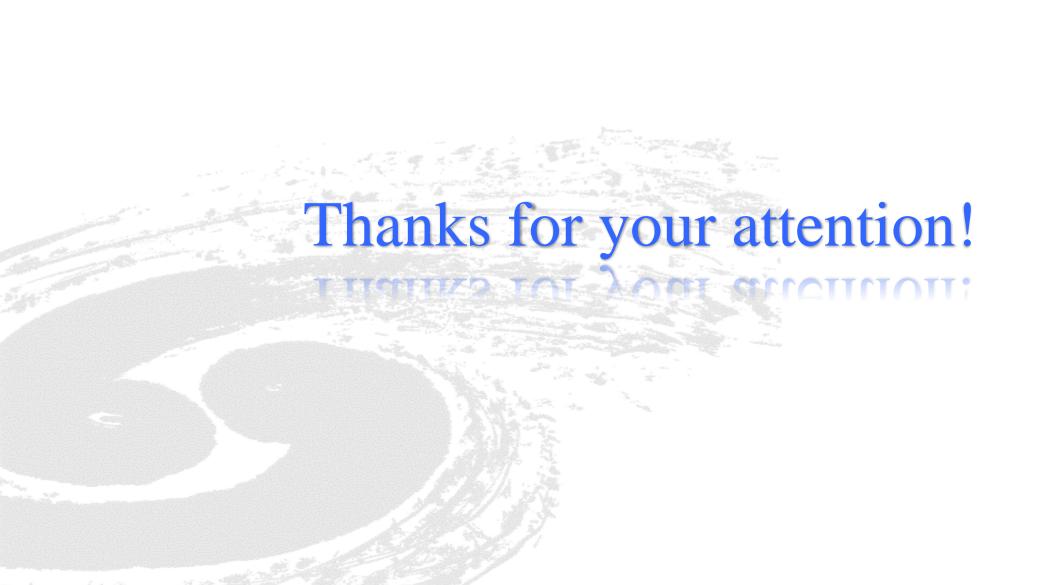
Cross sections in the 0.05-0.47 MeV(tail of the first resonance)

- Our results of the tail agree with the JENDL-5.0;
- The cross sections in the 0.05-0.35 MeV range support Gibbons(1959);
- The cross sections in the 0.4-0.47 MeV range support Johnson(1950) and the R-matrix(SAMMY) analysis of Pablo Torres-Sánchez (2023), and JENDL-5.0;
- A little higher than Wallner(2016) at 0.1-0.2 MeV;

Angle-integrated cross section

	Energy (MeV)	Cross section (barn)
This work	\sim 0.4911 \pm 0.0051	0.2079 ± 0.0055
JENDL-5.0	0.4927	0.27744
ENDF/B- VIII.1	0.491	0.382958
Morgan	~0.492	~0.2739

About half of the evaluation of ENDF/B-VIII.1. Lower(about 3/4) than Morgan(1979)'s results. Wallner(2016) suggested ~3.3 lower than Morgan(1979)'s results.


	Energy (MeV)	Cross section (barn)
This work	$^{\sim}0.6344 \pm 0.0075$	0.2399 ± 0.0051
JENDL-5.0	0.6351	0.244517
ENDF/B- VIII.1	0.635	0.279083

Agree with the JENDL-5.0.

SUMMARY

- Differential and angle-integrated cross sections of ¹⁴N(n, p)¹⁴C reaction are measured at the CSNS Back-n white neutron facility.
- The angle-integrated cross sections mostly agrees with the evaluations of the databases.
- In 0.05~0.45 MeV, the measured result agrees better with the evaluation of JENDL-5.0.
- The measured result at ~0.491 MeV is lower than the evaluation of JENDL-5.0 and lower than that of ENDF/B-VIII.1; The measured result at ~0.634 MeV agrees with the evaluation, within the measurement uncertainty.

