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Outline

• Recently published and soon to be published
• Ongoing work
• Recent experiments
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OM measurements
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Oslo method experiment
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M. Guttormsen et al., Nucl. Instr. Methods A 648,168 (2011) 
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Oslo Method in 4 (simple) steps!
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1. Obtain excitation energy 
tagged gamma spectra

2. Unfolding method

3. First generation method

4. Extract NLD and 𝛾SF

V. W. Ingeberg et al., Phys. Rev. C 106, 054315 (2022)

𝑃 𝐸! , 𝐸" ∝ 2𝜋𝐸"#𝑓 𝐸" 𝜌 𝐸$ = 𝐸! − 𝐸"



Unfolding

1. f0 = Ru0

2. u1 = u0 + (m – f0)

Repeat until convergence

f: Folded spectrum
u: unfolded
m: measured spectrum
R: response function

24.11.2025 7

u- = u + (r -.f’). (IO) 

and so on until ,f’ - I’, where i is the iteration index. 
As pointed out in Ref. [15] a response matrix with the 

experimental energy resolution gives artificial undershoots 
on both sides of pronounced peaks in the unfolded 
spectrum. They suggest that the best unfolding result is 
obtained with a smaller FWHM value than experimentally 
observed. namely FWHM”“’ = 0.5 FWHMrXP. This fea- 
ture has also been verified by us and is taken into account 
in the procedure. 

A few iteration steps of the difference approach applied 
to a NaI y-ray spectrum from the excitation region ET = 
0 - 8 MeV in Ih’Dy are shown in Fig. 3. The spectrum 
shows the ‘y-ray energy distribution detected in co- 
incidence with a-particles, using the “‘Dy(‘He, ay)lhZDy 
reaction at a beam energy of 45 MeV (see Refs. [ 16,171). 
The oscillations from channel to channel increase as a 
function of the number of iterations. For higher iterations 
the solution is almost identical with the exact matrix 
inversion (~1 = R-‘r, see Eq. (6)) which exhibits strong 
oscillations. Thus, it is important to terminate the iteration 
when the folded spectrum agrees with the observed 
spectrum within the experimental uncertainties. In our case 
this would be for the iteration around i = 10. 

The unfolding procedure described above is the d@er- 
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Fig. 3. The folding iteration method. Each iteration gives un- 
folded spectra (u’) that by folding (FG’) give better and better 
reproduction of rhe observed spectrum (r). 

~IIL’P ~~~~JXXK+I of the folding iteration method. since the 
corrections are performed using the difference according to 

1-1 21 = ll’ + (r -f”, (II) 

The ratio upprouch modifies the trial function by multiply- 
ing with a ratio 

Iti 
II = u’(rlf’) (I?) 

The ratio approach behave? much like the difference 
approach. However, decisions have to be made if f’ 
happens to be zero for some channels (see Eq. (12)). 
Furthermore, if the observed spectrum and the elements of 
the response matrix have only positive counts the ratio 
method fails to produce negative counts. This is an 
unwanted limitation and gives poorer reproduction of the 
observed spectrum. 

4. The Compton subtraction method 

Our starting point for the Compton subtraction method 
is the unfolded spectrum from the folding iteration method. 
typically the u spectrum in Fig. 3 obtained after i = 10 
iterations. We call this oscillating spectrum u(,. and we will 
present a new method to produce a much less fluctuating 
unfolded spectrum. The starting spectrum II,, could also be 
estimated applying some of the other methods mentioned 
in the introduction. 

First we define a new spectrum, representing the ob- 
served spectrum minus the Compton contribution, given by 

u(i) =p,(i)~l,,(i) + w(i), (13) 

where p,~,, is the full-energy contribution and u’ = U, + 
ud + ~4~  is the contribution from structures due to the single 
and double escape and annihilation processes. Here, we 
calculate 

u,(i - i,, ,I = p,(i)u,,(i) . 

u,(i - i,,,J, 1 = pdWuJi) . 

and 

(13) 

(15) 

%(i, I I ) = c p,,(ihr,,Ci), (16) 

where i,,, and i,,,,, are the channels having energies 51 I 
and 1022 keV, respectively. The probabilities pf, p,, pd and 
p, are taken from Table I. 

The II~ spectrum has all its counts in channel i,, , and 
has to be smoothed with a resolution of 1.0 FWHM to 
obtain the energy resolution of the experimentally ob- 
served spectrum. The II,, U, and u, spectra have an energy 
resolution determined by the observed spectrum 
( I .O FWHM) and the response matrix (0.5 FWHM) giving 
v 0 5 FWHM = 0.87 FWHM. Thus, we smooth 

p+lI,. u, and Us with an additional 0.5 FWHM in order to 

M. Guttormsen et al., NIM A 374, 371 (1996)
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FIG. 11. (Color online) Test of sensitivity of the total γ efficiency
to the level density (top) and γ -ray strength function (bottom)
extracted from simulated data.

thermalized prior to γ decay. This is supported by recent
calculations [35] based on the Iwamoto-Harada-Bispinghoff
model, showing that for the 160Dy(3He,αγ ) reaction with a
45-MeV 3He beam, the preequilibrium (“direct”) component
of the γ -ray spectra is very small for γ energies below
≈10 MeV (see Fig. 12). The same is true for the 46Ti(p, p′γ )
reaction with proton beam energy Ep = 15 MeV (see Fig. 13).
Note that the direct component is calculated using the
preequilibrium (i.e., statistical) formalism.

Experimentally, the independence of the reaction mecha-
nism has been tested by creating the same compound nucleus
with the two different reactions (3He,α) and (3He,3He′). This
has been done for, e.g., 96,97Mo [12], 161,162Dy [4], and
171,172Yb [3]. One observes an excellent agreement with the
level density and γ -ray strength function resulting from the
two reactions within the experimental error bars. However, at

FIG. 12. Calculated γ -ray spectra from the 160Dy(3He,αγ ) re-
action at 45 MeV [35]. The solid line shows the preequilibrium
component of the total γ -ray spectrum (γ before α), the dashed line
represents the equilibrium part (α before γ ), and the filled squares
give the total spectrum.

very low excitation energies, there is a significant difference
in the obtained level density: the inelastic scattering gives
consistently a higher level density close to the ground state
than does the pick-up reaction. This could be a sign that the
inelastic scattering populates states with wave functions having
a large overlap with the ground state and the low-lying excited
states. Thus, the decay to the ground state and low-lying states
will be very fast, and cannot be characterized as compound
decay.

The region at low excitation energies can be tricky also
in other aspects. Vertical ridges and/or valleys can occur in
the primary γ -ray matrix as a consequence of differences in
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model, showing that for the 160Dy(3He,αγ ) reaction with a
45-MeV 3He beam, the preequilibrium (“direct”) component
of the γ -ray spectra is very small for γ energies below
≈10 MeV (see Fig. 12). The same is true for the 46Ti(p, p′γ )
reaction with proton beam energy Ep = 15 MeV (see Fig. 13).
Note that the direct component is calculated using the
preequilibrium (i.e., statistical) formalism.

Experimentally, the independence of the reaction mecha-
nism has been tested by creating the same compound nucleus
with the two different reactions (3He,α) and (3He,3He′). This
has been done for, e.g., 96,97Mo [12], 161,162Dy [4], and
171,172Yb [3]. One observes an excellent agreement with the
level density and γ -ray strength function resulting from the
two reactions within the experimental error bars. However, at

FIG. 12. Calculated γ -ray spectra from the 160Dy(3He,αγ ) re-
action at 45 MeV [35]. The solid line shows the preequilibrium
component of the total γ -ray spectrum (γ before α), the dashed line
represents the equilibrium part (α before γ ), and the filled squares
give the total spectrum.

very low excitation energies, there is a significant difference
in the obtained level density: the inelastic scattering gives
consistently a higher level density close to the ground state
than does the pick-up reaction. This could be a sign that the
inelastic scattering populates states with wave functions having
a large overlap with the ground state and the low-lying excited
states. Thus, the decay to the ground state and low-lying states
will be very fast, and cannot be characterized as compound
decay.

The region at low excitation energies can be tricky also
in other aspects. Vertical ridges and/or valleys can occur in
the primary γ -ray matrix as a consequence of differences in
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Uncertainty estimation 

24.11.2025 9

4.5

4.8

5.1

5.4 ¥ Y

4.5

4.8

5.1

5.4 D G∞D

1 2 3 4 5 6
4.5

4.8

5.1

5.4 G∞DGin

1 2 3 4 5 6

G∞DGin regularized

10°3 10°2 10°1 100
Counts or Parameter value

E∞ [MeV]

E
in

[M
eV

]

2.5 5.0 7.5 10.0

Measured E∞ [MeV]

2

4

6

8

10

T
ru

e
E

∞
[M

eV
]

10°4

10°3

10°2

10°1
0.3

Paper soon to be submitted!



Bayesian Unfolding in the Oslo Method
• Model outline:

– Factorize total detector response R: discrete response D and Gaussian 
response kernel G from the finite detector resolution

– Forward model: 𝜇 → 𝜂 = 𝐺𝜇 → 𝜈 = 𝐷𝜂
(𝜇 = counts in true space, 𝜂 = counts smeared by G, 𝜈 = expected
counts in observed space)  

– Likelihood: 𝑛! ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜈!) – captures counting-statistics uncertainty
– Prior: log-normal on 𝜇 with hierarchical hyperpriors
– Posterior exploration with No-U-Turn Sampler (NUTS, PyMC 5)

• Capabilities & benefits
– Supports spectra up to 1000 energy bins
– Delivers full Bayesian uncertainty bands per bin (+ correlation between bins)
– Reproducible: open-source code & data

• Planned journal submission: early autumn 2025
• Co-authors: Erlend Lima, Ann-Cecilie Larsen, Anders Kvellerstad, 

Morten Hjort-Jensen
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Extraction of NLD and GSF
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χ 2 =
1
N free

Pth (Ei,Eγ )−P(Ei,Eγ )
ΔP(Ei,Eγ )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥Eγ=Eγ

min

Ei

∑
Ei=Emin

Emax

∑
2

Each vector element in r and f is treated as a free 
parameter
56Fe(p,p’) example:
Data points (“pixels”): 2052
Free parameters: 184

Nfree << Ndata
Runs 50 iterations, but converges often at 10-20 
iterations (depending on the case)

Higher order estimates through a least c2-minimization:

See: A. Schiller et al., NIM A 447, 498 (2000)

𝑃%& 𝐸! , 𝐸" =
2𝜋𝐸"#𝑓 𝐸" 𝜌(𝐸! − 𝐸")

∑'! 2𝜋𝐸"
#𝑓 𝐸" 𝜌(𝐸! − 𝐸")



Normalization of NLD
• Comparison to NLD from tabulated 

discrete levels
• Comparison to NLD at neutron 

separation energy

• 𝐷!: Average s-wave resonance spacing
• 𝛼": Parity asymmetry
• 𝜎: Spin-cutoff parameter

• Between Sn and data: Interpolation 
with some model (usually CT)

• Gives the absolute value of the NLD, 
A, and the slope 𝛼
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Normalization of NLD – NLD at particle 
threshold
• Use resonance spacing at particle threshold to determine NLD:

• Where:
• 𝐷0: s-wave resonsnace spacing, most often neutron resonaces, 

sources such as RIPL-3 and Mughabghab
• 𝐼𝑡: Ground state spin of the A-1 nucleus
• 𝛼/: Parity asymmetry
• 𝜎: Spin-cutoff parameter
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Normalization of GSF
Slope parameter 𝛼 determined by normalized NLD
Now assuming dipole transitions dominate:

𝐵𝑇 𝐸% = 𝐵(
&'

𝒯&' 𝐸% ≈ 𝐵 𝒯() 𝐸% + 𝒯*) 𝐸%

Next step: Average total radiative width:
Γ%(E, 𝐽, 𝜋) =

1
4𝜋𝜌(𝐸, 𝐽, 𝜋)(

&'

(
+(,"(

6
!

(
𝑑𝐸% 𝒯&' 𝐸% 𝜌(𝐸 − 𝐸% , 𝐽- , 𝜋-)

Normalization integral (normalize to ⟨Γ!"⟩, average radiative of  s-wave capture res.)

 ⟨Γ0 𝑆1 , 𝐼2 ±
3
4
, 𝜋2 = 56!

4/ ∫7
8" 𝑑𝐸0 𝒯9: 𝐸0 𝜌 𝑆1 − 𝐸0 	∑;<=33 𝑔(𝑆1 − 𝐸0 , 𝐼2 ±

3
4
+ 𝐽)
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Normalization of GSF
• GSF covers energies 

between 𝐸+,-.  and 𝐸/,0/

• Need to extrapolate between 
• 𝐸0 = 0 and 𝐸0>?1
• 𝐸@>A@ and 𝑆1

• Between 𝐸+ = 0 and 𝐸+,-.:
 𝒯 𝐸0 = BCD AE!FG

E!"

• Between 𝐸/,0/ and 𝑆.:
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Systematic effects of the normalization

• Selection of spin-cutoff parameter:
• If spin-cutoff is to big -> steep slope
• Will affect the strength abs. value

• Large parity asymmetry
• Will give wrong abs. Strength
• Average total radiative width of s-wave resonances integral no longer 

valid
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Shape method
• Decay to discrete levels
• Can obtain the shape of the 𝛾SF
• Constrains the slope of OM data

INDEPENDENT NORMALIZATION FOR γ -RAY … PHYSICAL REVIEW C 104, 014311 (2021)
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Similarly, when applying the shape method it is imperative
to remain above Ei values with enough initial states within the
energy bin at Ei that feed the levels contained by the diagonals.
For 92Zr we obtain erratic fluctuations for Eγ < 5 MeV and
these data are not shown.

It is gratifying that the six extracted γ SFs from the shape
method are all in rather good agreement with the functional
form between each other and the one obtained with the Oslo
method. Since the combination of diagonals represent a vari-
ety of final Jπ values, yet they provide consistent functional
forms, the spin distribution g(E , J ) applied in Eq. (5) with spin
cutoff parameters of Table I is supported.

C. Diagonals including ground and two-quasiparticle
bands: 164Dy

For rare earth nuclei, the level density becomes high
enough that it is difficult to identify final levels in the P(Eγ , E )
matrix within the experimental resolutions. However, the
known levels of 164Dy group into the ground-state band be-
tween 0 and 0.5 MeV and two-quasiparticle band structures
around 1.1 MeV. Figure 5 illustrates the level density ob-
tained with the Oslo method, and displays these two relatively
well-defined structures. This makes 164Dy a feasible case for
applying the shape method to the 164Dy(3He, 3He′) experi-
mental data, measured with the CACTUS and SiRi arrays,
from Refs. [32,56,57]. Furthermore, there are two interesting
features in the previous findings of the γ SF: (i) a scissors
resonance at Eγ = 2.83(8) MeV is built on the tail of the
giant dipole resonance and (ii) it has been speculated that
an enhancement exists around Eγ = 6–7 MeV due to the E1
pygmy resonance [32]. From the matrix in Fig. 6(a) we
recognize the diagonals corresponding to the ground-state and
two-quasiparticle bands. Here, diagonal D1 includes the 0+,
2+, 4+, and 6+ levels of the ground state band in the excitation

region of 0–0.5 MeV. Diagonal D2 includes 14 levels in the
excitation region of 0.76–1.39 MeV, all with known Jπ [51].
Figure 6(b) shows the γ SF extracted with the Oslo method
[32] together with the shape method results. The highest γ -ray
energies above ≈7 MeV are located in a region that is possibly
affected by structural effects. Here, the decay goes to the
ground-state band, for which the NLD is overestimated, as is
apparent from Fig. 5. This could be due to a strong overlap
and thus dependence of the initial levels and the ground band,
with the possible consequence of the NLD and γ SF not being
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Similarly, when applying the shape method it is imperative
to remain above Ei values with enough initial states within the
energy bin at Ei that feed the levels contained by the diagonals.
For 92Zr we obtain erratic fluctuations for Eγ < 5 MeV and
these data are not shown.

It is gratifying that the six extracted γ SFs from the shape
method are all in rather good agreement with the functional
form between each other and the one obtained with the Oslo
method. Since the combination of diagonals represent a vari-
ety of final Jπ values, yet they provide consistent functional
forms, the spin distribution g(E , J ) applied in Eq. (5) with spin
cutoff parameters of Table I is supported.

C. Diagonals including ground and two-quasiparticle
bands: 164Dy

For rare earth nuclei, the level density becomes high
enough that it is difficult to identify final levels in the P(Eγ , E )
matrix within the experimental resolutions. However, the
known levels of 164Dy group into the ground-state band be-
tween 0 and 0.5 MeV and two-quasiparticle band structures
around 1.1 MeV. Figure 5 illustrates the level density ob-
tained with the Oslo method, and displays these two relatively
well-defined structures. This makes 164Dy a feasible case for
applying the shape method to the 164Dy(3He, 3He′) experi-
mental data, measured with the CACTUS and SiRi arrays,
from Refs. [32,56,57]. Furthermore, there are two interesting
features in the previous findings of the γ SF: (i) a scissors
resonance at Eγ = 2.83(8) MeV is built on the tail of the
giant dipole resonance and (ii) it has been speculated that
an enhancement exists around Eγ = 6–7 MeV due to the E1
pygmy resonance [32]. From the matrix in Fig. 6(a) we
recognize the diagonals corresponding to the ground-state and
two-quasiparticle bands. Here, diagonal D1 includes the 0+,
2+, 4+, and 6+ levels of the ground state band in the excitation

region of 0–0.5 MeV. Diagonal D2 includes 14 levels in the
excitation region of 0.76–1.39 MeV, all with known Jπ [51].
Figure 6(b) shows the γ SF extracted with the Oslo method
[32] together with the shape method results. The highest γ -ray
energies above ≈7 MeV are located in a region that is possibly
affected by structural effects. Here, the decay goes to the
ground-state band, for which the NLD is overestimated, as is
apparent from Fig. 5. This could be due to a strong overlap
and thus dependence of the initial levels and the ground band,
with the possible consequence of the NLD and γ SF not being
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independent of spin, parity, and excitation energy. Thus, we
replace the expression for the transmission coefficient by
T (Eγ ), i.e., a function only dependent of Eγ . Furthermore,
if we assume the dominance of dipole transitions in the quasi-
continuum region, the transmission coefficient can be replaced
by the γ SF through T (Eγ ) = 2π f (Eγ )E3

γ from Eq. (11).
With the considerations above, Eq. (13) can be written as

ND ∝ f (Eγ )E3
γ

∑

[Jf ]

Ji=Jf +1∑

Ji=Jf −1

σ (Ei, Ji )g(Ei, Ji ). (15)

In the following we will assume that the probability of pop-
ulating a certain initial state with spin Ji at a given Ei is
approximately independent of spin, i.e., σ (Ei, Ji ) ≈ σ (Ei, J ′

i ).
The shape method applies for the same Ei but for two

different diagonals D1 and D2; see Fig. 1. We choose diagonal
D1 to represent a lower final excitation energy E f 1 and D2
a higher final excitation energy E f 2. At the initial excitation
energy Ei, the γ -ray energies are Eγ1 = Ei − E f 1 and Eγ2 =
Ei − E f 2 for diagonals D1 and D2, respectively.

The strength functions at Eγ1 and Eγ2 are determined by
the number of counts at the diagonals D1 and D2 for the same
initial excitation energy Ei, using Eq. (15):

f (Eγ 1) ∝ ND1

E3
γ 1

∑
[Jf 1]

∑Ji=Jf 1+1
Ji=Jf 1−1 g(Ei, Ji )

f (Eγ 2) ∝ ND2

E3
γ 2

∑
[Jf 2]

∑Ji=Jf 2+1
Ji=Jf 2−1 g(Ei, Ji )

. (16)

In synergy with the methods introduced above, such a
pair of γ SF data points is internally normalized and we can
determine a γ SF data-point pair for each Ei. The double sum
can be omitted if the two diagonals include one final level each
of the same Jπ . However, such diagonals are often difficult
to identify in the data, and it is more common to observe
different spins for two diagonals, such as the 0+ ground state
and the first-exited 2+ state in even-even nuclei.

Figure 2 illustrates a sewing technique that allows one to
connect pairs of γ SF data points and is the final step of the
shape method to obtain the functional form of the γ SF. In this
example, we show three different pairs, each from a different
Ei, marked by filled circle, square, and triangle data points.
The second and third γ SF pairs are scaled as explained in
the figure caption. In detail, this is accomplished by finding
a matching-point energy, which is chosen to be the average
γ -ray energy Eγ ave of the two extreme γ SF data points of two
neighboring pairs. Generally, the deviations between adjacent,
matched pairs are larger when using a linear interpolation.
Therefore, we use a logarithmic interpolation of the γ SF data
points for each pair to Eγ ave. The resulting sewed γ SF is
represented by the black line to guide the eye in panel (c) and
exhibits the shape of the γ SF.

IV. SHAPE METHOD ANALYSIS AND RESULTS

In the following, when referring to discrete final levels
within the diagonals, we always refer to levels in the data
base from the National Nuclear Data Center (NNDC) [51].

! !

!

FIG. 2. Illustration of the sewing technique for three γ SF pairs
(filled circles, squares, and triangles) with each pair connected by
dashed lines in (a). The matching-point energy is chosen to be the
average (location of arrows) γ -ray energy Eγ ave of the two extreme
(lowest and highest) γ SF data points of two neighboring pairs. The
second pair of data points (filled squares) is scaled by a factor to
match the first pair of data points at a location indicated by the arrow
(filled circles) (a). Then the third pair of data points (filled triangles)
is scaled to match the previously corrected data pair (filled squares)
at the location of the arrow (b). Finally, the resulting sewed γ SF is
presented in (c) (solid black line).

For each application of the shape method we use a first-
generation matrix with ≈30–40 keV/channel on both axes
from which the numbers of counts are determined through
integration. These are then further compressed into bins of
≈120 keV/channel unless otherwise noted. The statistical
uncertainties are included for each data point through error
bars. The observed spread between neighboring matched data
points is reflective of the uncertainty band due to the sewing
method, e.g., logarithmic interpolation. Detailed discussions
on the comparisons of the results from the shape and Oslo
methods are deferred to Sec. V.

A. Diagonals with the same final Jπ: 56Fe

We utilize data from the 56Fe(p, p′γ ) 56Fe reaction pre-
viously presented in Refs. [29,30], where the γ rays were
measured with six large-volume LaBr3(Ce) detectors from
the HECTOR+ array [52] and the charged particles with the
SiRi silicon telescope [53]. Figure 3(a) shows the resulting
P(Eγ , Ei ) matrix of 56Fe. Gates were set on the diagonals and
correspond to the direct decays to the 2+

1 (diagonal D1) and 2+
2

(diagonal D2) levels at 847 and 2658 keV in 56Fe, respectively.
As the spins and parities for the two final levels are the same,
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determine a γ SF data-point pair for each Ei. The double sum
can be omitted if the two diagonals include one final level each
of the same Jπ . However, such diagonals are often difficult
to identify in the data, and it is more common to observe
different spins for two diagonals, such as the 0+ ground state
and the first-exited 2+ state in even-even nuclei.

Figure 2 illustrates a sewing technique that allows one to
connect pairs of γ SF data points and is the final step of the
shape method to obtain the functional form of the γ SF. In this
example, we show three different pairs, each from a different
Ei, marked by filled circle, square, and triangle data points.
The second and third γ SF pairs are scaled as explained in
the figure caption. In detail, this is accomplished by finding
a matching-point energy, which is chosen to be the average
γ -ray energy Eγ ave of the two extreme γ SF data points of two
neighboring pairs. Generally, the deviations between adjacent,
matched pairs are larger when using a linear interpolation.
Therefore, we use a logarithmic interpolation of the γ SF data
points for each pair to Eγ ave. The resulting sewed γ SF is
represented by the black line to guide the eye in panel (c) and
exhibits the shape of the γ SF.
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In the following, when referring to discrete final levels
within the diagonals, we always refer to levels in the data
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FIG. 2. Illustration of the sewing technique for three γ SF pairs
(filled circles, squares, and triangles) with each pair connected by
dashed lines in (a). The matching-point energy is chosen to be the
average (location of arrows) γ -ray energy Eγ ave of the two extreme
(lowest and highest) γ SF data points of two neighboring pairs. The
second pair of data points (filled squares) is scaled by a factor to
match the first pair of data points at a location indicated by the arrow
(filled circles) (a). Then the third pair of data points (filled triangles)
is scaled to match the previously corrected data pair (filled squares)
at the location of the arrow (b). Finally, the resulting sewed γ SF is
presented in (c) (solid black line).

For each application of the shape method we use a first-
generation matrix with ≈30–40 keV/channel on both axes
from which the numbers of counts are determined through
integration. These are then further compressed into bins of
≈120 keV/channel unless otherwise noted. The statistical
uncertainties are included for each data point through error
bars. The observed spread between neighboring matched data
points is reflective of the uncertainty band due to the sewing
method, e.g., logarithmic interpolation. Detailed discussions
on the comparisons of the results from the shape and Oslo
methods are deferred to Sec. V.

A. Diagonals with the same final Jπ: 56Fe

We utilize data from the 56Fe(p, p′γ ) 56Fe reaction pre-
viously presented in Refs. [29,30], where the γ rays were
measured with six large-volume LaBr3(Ce) detectors from
the HECTOR+ array [52] and the charged particles with the
SiRi silicon telescope [53]. Figure 3(a) shows the resulting
P(Eγ , Ei ) matrix of 56Fe. Gates were set on the diagonals and
correspond to the direct decays to the 2+

1 (diagonal D1) and 2+
2

(diagonal D2) levels at 847 and 2658 keV in 56Fe, respectively.
As the spins and parities for the two final levels are the same,
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FIG. 3. Population probability gpop(Ex, J, π ) of levels in the
239Pu(d, p)240Pu reaction as a function of excitation energy Ex , and
spin-parity Jπ . (a) Projection of gpop(Ex ) (blue squares) for the
highest excitation energy, Ex = 6.5 MeV, which reveals a strong
asymmetry in the populated parities. We observe that gint (green
triangles) is much broader then gpop (blue squares). Note that the
distributions are normalized to 1 summing over all Jπ in each Ex

bin, but the plot ranges only between Jπ = 9±.

this will lead to an underestimation of the absorption cross
section of about 20%; however the relative population of the
different spins and parities should essentially be unaffected.
We normalize the population cross sections to 1 for each Ex
bin, thus obtaining the probability distribution gpop. Figure 3
shows the results for the population spin-parity distribution
gpop(Ex, J,π ).

Compound reactions are the second mechanism leading to
240Pu as a residual nucleus: proton evaporation after fusion of
the deuteron and target nucleus and the inelastic excitation of
the target to energies above the proton emission threshold. The
spin-parity integrated cross section for these processes has
been estimated to be ≈0.5 mb/(MeV sr) using the statistical
framework of the TALYS nuclear reactions code v1.8 [48]. This
is an order of magnitude smaller than for the direct process
and therefore neglected. The low cross sections are reasonable
as the deuteron beam energy of 12 MeV is below the Coulomb
barrier of about 14.46 MeV, where the latter is calculated with
a radius parameter r0 = 1.26 fm [49].

C. Synthetic data

To study the effect on the extracted NLD and γ SF, we
generate a synthetic data set with the statistical nuclear decay
code RAINIER v1.4.1 [44,50]. This code uses a Monte Carlo
approach to generate levels of an artificial nucleus and simu-
late γ -emission cascades via E1, M1, or E2 transitions. The
analysis library facilitates the extraction of the γ -ray spectra
(first or all generations) emitted from each initial excitation
energy bin Ex. The matrix including the γ -ray spectra of
all generations substitutes for the experimental particle-γ
coincidence in the further analysis. The input parameters have
been chosen to resemble the 240Pu nucleus and the analysis
in the previous section. The initial settings are summarized

below, and a comprehensive list including the analysis code
can be found online:3

(i) Discrete levels up to 1.037 MeV (18 levels).
(ii) Above 1.037 MeV: Generated levels from the NLD

extracted in Sec. IV with the nearest-neighbor spacing
according to the Wigner distribution [51].

(iii) Intrinsic spin distribution gint (Ex, J ) following
Eq. (5), with a spin-cut parameter σ of Eq. (6)
(assumes equiparity).

(iv) Spin-parity dependent population probabilities
gpop(Ex, J,π ).4

(v) γ SF as extracted in Sec. IV, fitted by two E1 constant
temperature Generalized Lorentzians (GLO) [42],
two M1 Standard Lorentzians (SLO), and including
Porter-Thomas fluctuations [52]. The E2 component
was assumed to be negligible.

(vi) Internal conversion model: BrIcc frozen orbital ap-
proximation [53].

Due to the strong parity dependence of gpop, the generated
simulated coincidence spectra depend on the decomposition
of the γ SF into its E1 and M1 components. We performed a
χ2 fit of the centroid, the peak cross section and width of each
resonance of the γ SF simultaneously using the differential
evolution algorithm by Storn and Price [54]. In addition to our
data Y sum, which measures only the summed γ SF (M1 + E1),
we include the data Y E1/M1 of Kopecky et al. [55,56] around
Sn, which resolve the E1 and M1 components. There are no
measurements for the giant dipole resonance (GDR) of 240Pu.
However, as the GDR is expected to vary little between the
plutonium isotopes, we also include 239Pu(γ , abs) measure-
ments (again included in Y sum) by De Moraes and Cesar [57]
and Gurevich et al. [58]. A third data set by Berman et al.
[59] yields systematically lower cross sections than the first
two measurements, which are consistent within the error-bars.
Therefore we did not include the data of Berman et al. [59] in
the fit. Each term is weighted by the experimental uncertainty
of the datapoint. The total χ2 is then given as the sum over the
χ2s for the summing data Y sum (E1 + M1) and data Y E1/M1
that resolve the M1 and E1 contributions:

χ2 =
∑

i∈Y sum

χ2
sum +

∑

i∈Y E1

χ2
E1 +

∑

i∈Y M1

χ2
M1. (11)

D. Analysis of an iteration

The generated coincidence data are analyzed with the Oslo
method and the results are displayed in Fig. 4. We can quantify
how consistent the input NLD and γ SF are by construction
of the ratio r of the apparent NLD and γ SF analyzed from

3https://github.com/fzeiser/240Pu_article_supplement.
4For an even more stringent test of the first generation method,

we could have included the population cross sections σpop(Ex, J, π )
directly, instead of the probabilities σpop, which are normalized to 1
for each excitation energy.

gpop(Ex, J, π ) = σpop(Ex, J,π )∑
Ex

σpop(Ex, J, π )
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FIG. 4. Upper panels: NLD (a) and γ SF (b) extracted with the Oslo method from synthetic data (iterations 1, 3, and 4) compared to those
extracted from the experimental coincidence data in Sec. IV. The γ SFs are compared to the fit of the experimental data points. As a guide to
the eye, the data are connected by solid lines and dashed lines denote the extrapolations assumed for the Oslo method. Lower panels: Ratios
of the NLD (c) and γ SF (d) extracted from synthetic data to those from the experimental coincidence data. The error bars are a combination
of statistical and proposed systematic error (mostly due to potential nonstatistical decay at high Eγ ) as retrieved from the Oslo method when
analyzing the synthetic data. Note that the analysis of synthetic data created from iteration 3 (input is displayed) results in a NLD and γ SF that
closely resemble the experimental analysis.

synthetic data to the experimental analysis (see Sec. IV). We
extract this ratio for each iteration. For the NLD this means
that below 3 MeV we compare to the data points, whereas
above 3 MeV we use the CT extrapolation. In case of the γ SF,
we compare to its fit, so the sum of the 2 GLOs and 2 SLOs.
The inverse of the ratio r is used as a bin-by-bin correction
z = (1/r) − 1 to the input NLD and γ SF of iteration n, such
that we generate the input for the next iteration, n + 1:

In+1 = In

(
1 + 1

2
z
)

, (12)

where I is the input NLD or γ SF, respectively. We introduced
an additional factor of 1/2, which can be seen as reduction of
the step-size of the correction z. This increased the stability
of the solution. As an example, looking at the first iteration,
we find that the analyzed NLD from the synthetic data at
2.5 MeV is only 50% of the experimentally observed NLD.
We would therefore increase the input NLD for the next
iteration by 25% in this bin (and process all other bins of the
NLD and γ SF in the same manner). For the first iterations
we observe that the changes impact 〈"γ 〉 by about 25%. As
〈"γ 〉exp is determined from independent measurements, we
enforce a match by rescaling the predicted input γ SF. Note
that this does not affect the generated coincidence spectra.

E. Results

After only 3 to 4 iterations, we observe that the γ SF and
NLD have approximate converged, with the exception of the

higher energy region of the γ SF. The reproduction of the
γ SF above Emax

γ = 4.0 MeV remains challenging. The cor-
responding fit region in the first-generation matrix is formed
by non-statistical decays, thus it is not obvious that the Oslo
method should be applicable in this regime. In addition, the
comparison in this regime is sensitive to the choice of the
extrapolation of the initial γ SF.

In Fig. 5 we compare the experimental coincidence data
with the synthetic data from different iterations. All spectra
have been normalized to obtain the probability P(Eγ ) for the
emission of a γ ray with energy Eγ in the decay cascade
from a level in the excitation energy bin Ex. This removes any
dependence on the simulated vs. measured number of γ rays
and of a potential mismatch of the population cross section
as a function of the excitation energy Ex. The χ2 differences
over whole extraction region (see Sec. II) are displayed for
each iteration in Fig. 6. We find that iteration 3 improves
the reproduction of the experimental coincidence spectra by
about 50%, compared to the initial analysis, iteration 1.
Higher iterations give a reasonable reproduction of the first
generation spectra, but show an increased deviation of the (all
generations) coincidence spectra. This might be explained by
an overcompensation for Eγ > 4 MeV as discussed above.
Additionally, a closer analysis of the first vs. all generations
spectra indicate a too high probability to decay through a
specific state, or set of states, with Ex ≈ 1.3 MeV. This is
already visible for iteration 3 in Fig. 5, but the mismatch
increases for the higher iterations.
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FIG. 7. (a) The primary γ matrix P(Eγ , Ei ) of 145Nd showing the cuts for the two diagonals. (b) The resulting γ SF from the shape method
(filled and open blue triangles) compared to the Oslo method using η = 1.0 and 0.11.

spin distribution follows Eq. (8). Again we can estimate the
probability plevel(Ei, Ji ) for populating individual levels of
spin Ji at excitation energy Ei using Eq. (15). Table II lists
the (d, p) spin population probabilities plevel at Sn, which are
normalized to unity for J = 1/2.

Figure 8 summarizes the results obtained by introducing
spin corrections in the Oslo method. With reduction factors of
η = 0.22(2) and η = 0.11(2) for the (p, p′) and (d, p) reac-
tions, respectively, the γ SFs follow a systematic trend from
isotope to isotope. This feature is encouraging and indicates
that our corrections are sound.

We should mention that the extracted data points at or
below Eγ ≈ 1 MeV of Fig. 8 may have been distorted by an
imperfect subtraction of strong γ lines in the first-generation
procedure. Such structures appear as vertical ridges and/or
valleys in some of the primary Nd matrices, and therefore data
points at or below Eγ ≈ 1 MeV should be taken with caution.

IV. COMPOSITION AND EVOLUTION OF THE γSF

The γ SF is composed of several structures which interplay
and add up to the total γ SF. Many of these structures depend
strongly on the quadrupole deformation β2, which makes the
chain of neodymium isotopes of particular interest. The giant
dipole resonance (GDR) is known to split into two com-
ponents with deformation and the pygmy dipole resonance
(PDR) is expected to be stronger with increasing neutron
excess. Furthermore, the scissors mode (SM) strongly de-
pends on deformation and finally the low-energy enhancement
(LEE) seems to be absent for deformed, heavy systems.

By introducing semiempirical models [2,23] for all these
structures, a total of 18 parameters have to be determined. This
complicates a simultaneous fit to the data, and the following
fitting strategy is chosen. Since the GDR is well separated
from other structures around ≈15 MeV, we will first fit this
part of the GDR. Using these parameters, the low-energy E1
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FIG. 8. The γ SFs with spin reduction factors of η = 0.22 and
0.11 for 142,144,146,148,150Nd (red symbols) and 145,147,149,151Nd (blue
symbols), respectively (see text). Except for 142Nd, the γ SFs are
separated by multiplying the next data set with a factor of 3 for better
visualization.
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FIG. 6. (a) The primary γ matrix P(Eγ , Ei ) of 144Nd showing the cuts for the two the diagonals. (b) The resulting γ SF from the shape
method (filled and open blue triangles) compared to the Oslo method using η = 1.0 and 0.22. The filled red square data point is taken from
discrete resonance capture data (DRC) [3].

the counts ND1 and ND2, a pair of internally normalized values
f (Eγ 1) and f (Eγ 2) is extracted by exploiting the proportion-
ality of Eq. (16). These pairs are then connected together by
a sewing technique based on logarithmic interpolation. The
obtained strength function f (Eγ ) has in principle the correct
functional form, but the absolute normalization is arbitrary
and must be determined by other means. More details of the
shape method are given by Wiedeking et al. [11].

Figure 5(b) shows the result of the Shape method giv-
ing a perfect overlap with the Oslo method data using
a level-density reduction factor η = 0.22 at Sn. Here, the
Shape-method data points are multiplied by a common
absolute-normalization factor, which is found by a χ2 fit to the
Oslo data in the Eγ = 2.5–7.3 MeV energy region. The γ SF
data points from populating the two diagonals (filled and open
blue triangles) scatter slightly, indicating that the systematic
uncertainties with the Shape method is small in the case of
150Nd. The fact that the side-feeding technique and the shape
method give consistent results is very gratifying.

We also test the shape method on 144Nd where known
(n, γ ) data exist for comparison. Figure 6(a) shows that an-
other advantage with this almost spherical nucleus (β2 =
0.125) is that the diagonal to the 0+ (0 keV) and 2+ (697 keV)
are well separated and thus more accurate integrals for D1 and
D2 can be obtained. The 0+ ground level is reached by dipole
transitions from initial spin/parities 1±, whereas the 2+ level
is populated by decay from the 1±, 2±, and 3±. It is therefore
important to use reasonable probabilities plevel (see Table II)
for the initial spins populated in the reaction.4

4If the two diagonals represent decay to levels with identical spin-
parities or with a broad range of spin-parities, the values of plevel can
be kept fixed for all spins.

The results of the shape method are displayed in Fig. 6(b).
Again we see a good agreement between the γ SF from the
Shape method and the Oslo method using η = 0.22. In ad-
dition, the two γ SFs agree well with the discrete resonance
capture data (DRC) [3], which gives additional support to our
procedure described above.

We conclude that the two test cases 144,150Nd strongly
suggest that a common level density reduction factor of η =
0.22(2) at Sn is reasonable for the (p, p′) reaction with 16-
MeV protons on these neodymium isotopes.

B. Spin distribution of the (d, p) reaction

In the present work, (d, p) reactions are used to study the
odd-A neodymium isotopes. Here, the side-feeding method
cannot be applied due to many close-lying γ -ray lines that
are not separated due to the limited detector resolution. Also,
intraband transitions connecting close-lying rotational bands
complicate the extraction of side feeding from the quasicon-
tinuum. However, the shape method is applicable provided
that the two diagonals include levels of known spin-parities.

The best case for the shape method applied to the (d, p)
reaction is 145Nd, where the lowest diagonal D1 is well de-
fined with the levels 7/2− (0 keV), 3/2− (67 keV), and 5/2−

(73 keV). Diagonal D2 is more problematic; however, we have
taken ten levels in the final excitation region 0.66–1.09 MeV
with average spin of 〈Jf 〉 ≈ 2.9.

Figure 7(a) shows the diagonals and integration limits for
145Nd, and the shape method results are displayed as filled and
open blue triangles in Fig. 7(b). As shown, the Oslo method
with intrinsic spin distribution (solid grey squares) exhibits a
γ SF too steep compared to the shape method. By introducing
a level density reduction factor at Sn of η = 0.11(2), a very
good overlap between the Oslo and shape methods is obtained.
As for the (p, p′) reaction, we assume that the experimental
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distribution of the heavy nuclei studied. Table I shows typ-
ically σ (Sn) ≈ 6, which represents [see Eq. (8)] an average
spin of ⟨J⟩ ≈ 7 with a negligible contribution of spins above
J ≈ 15–20. This is a significantly larger spin distribution than
expected from the applied (p, p′) and (d, p) reactions at low
beam energies.2

In the following, we aim to estimate experimentally the
ratio

η =
ρexp(Sn)
ρtot (Sn)

(12)

between the level density populated in the reaction and the to-
tal, intrinsic level density3 given in Table I. With this reduction
factor, we can estimate the experimental level density ρexp(E )
for excitation energies up to the neutron separation energy Sn,
as demonstrated in Fig. 3 for 147Nd by the filled black data
points.

It is obvious that the observed level density has a less steep
slope compared to that without a reduction of available spins.
Since the observed P(Eγ , Ei ) matrix represents the experi-
mental spin range, ρexp(E ) must be adopted in Eq. (4). By
replacing ρtot (E ) with ρexp(E ), the slope of T (Eγ ) will cor-
respondingly change to fit the observed P(Eγ , Ei ) landscape.
As seen from Eqs. (6) and (7), a less steep slope of ρ will
induce a less steep slope of T as well.

In the following, we adopt two techniques to estimate η,
namely (i) the side feeding into the rotational ground-state
band for well-deformed nuclei and (ii) the recently developed
shape method [11]. Only 150Nd works for the side-feeding
method, whereas the shape method may be used for all nuclei
if the final levels are known and experimentally separable.

A. Spin distribution of the (p, p′ ) reaction

The 150Nd isotope is a well-behaving rotor with a
quadrupole deformation of β2 = 0.283 [27]. With an ini-
tial excitation energy gate of Ei = 7.2–7.8 MeV, we have
evaluated the efficiency-corrected ground-state band γ -ray
intensities Iγ (J → J − 2) and from these values estimated the
side feeding of spin J from the quasicontinuum by

S(J ) = Iγ (J → J − 2) − Iγ (J + 2 → J ). (13)

The intensities in the ground-state band fade exponentially
with spin, and the highest transition found was the 10+ →
8+ 468.9-keV γ -ray line. Assuming that this 10+ level also
collects the decay from higher spins, we fit the side-feeding
spin distribution to Eq. (8) with the spin cutoff parameter as
a free parameter. The fit result for the experimental data is
shown in Fig. 4(a), with σexp = 2.9(2). For comparison, also
the intrinsic spin distribution with σtot = 6.2 is displayed as a
solid curve.

The two spin distributions g(Sn, J )tot and g(Sn, J )exp of
Fig. 4(a) are normalized to unity by integrating Eq. (8) for

2For previous helium-induced reactions on lighter nuclei, the pop-
ulated spin distribution was much closer to the real intrinsic spin
distribution, and performing corrections was not necessary.

3By intrinsic level density we mean all available levels within an
excitation energy bin (independent of the nuclear reaction applied).

Spin quantum number J

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

0.22
0.24

S
pi

n 
di

st
rib

ut
io

n

Nd150(p, p') (a)

Exp data

 = 2.9!Exp,

 = 6.2!Tot,

0 2 4 6 8 10 12 14 16
Spin quantum number J

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

S
pi

n 
di

st
rib

ut
io

n

(b)

 = 2.9! 0.22, "Exp

 = 6.2!Tot,

Cross sec. (arb.units)

FIG. 4. Spin distributions in 150Nd. Panel (a) shows the intrin-
sic spin distribution (solid curve) with a spin cutoff parameter of
σ = 6.2. The experimental data points are the S(J ) values obtained
by the evaluated side feeding, which are fitted to a spin distribution
(dashed curve) with σ = 2.9. Panel (b) shows the experimental spin
distribution (dashed curve) with σ = 2.9 normalized to the lowest
spin of the intrinsic spin distribution. The dashed-dotted curve (ar-
bitrary units) shows the ratio between the experimental and total
spin distributions, and will be referred to as the average probability
plevel (Ei, Ji ) of populating individual levels of spin Ji, where the value
at J = 0 is normalized to unity.

all J . However, with the assumption that there is no spin
reduction for the lowest spin, i.e., J = 0 for 150Nd, we find
the level-density reduction factor by

η = g(Sn, J = 0)tot

g(Sn, J = 0)exp
= 0.22(2). (14)

The function ηg(Sn, J )exp is shown in Fig. 4(b), which coin-
cides with the lowest spins of the g(Sn, J )tot distribution. We
have calculated the side feeding for three excitation-energy
bins: 5.1, 6.3, and 7.5 MeV and found that the populated spin
distribution varies with less than 10%. Therefore, we have
assumed that this populated spin distribution is also valid at
the neutron separation energy to estimate the reduction factor
η at Sn.
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TABLE I. The quadrupole deformation β2 and parameters for extracting experimental NLD and γ SF.

Nucleus β2 TCT Ed σd Sn σ (Sn) D0 ρ(Sn) ⟨%γ ⟩
(MeV) (MeV) (MeV) RMI (eV) (106 MeV−1) (meV)

142Nd 0.092(2) 0.65(5) 2.5 3.0 9.828 6.6 19(4)a 1.23(35)b 77(20)c

144Nd 0.125(2) 0.63(3) 2.5 2.8 7.817 6.3 37.6(21) 0.32(5) 74.2(18)
145Nd 0.138(5)d 0.59(3) 1.3 2.9 5.755 5.9 450(50) 0.16(4) 51(4)
146Nd 0.151(2) 0.62(3) 1.5 2.6 7.565 6.2 17.8(7) 0.67(11) 74(3)
147Nd 0.176(5)d 0.57(3) 0.5 2.0 5.292 5.8 346(50) 0.20(5) 54(4)
148Nd 0.200(2) 0.59(3) 1.4 2.5 7.333 6.1 5.9(11) 2.4(6) 68.8(60)
149Nd 0.242(5)d 0.54(3) 0.5 2.3 5.039 5.8 165(14) 0.42(9) 45(3)
150Nd 0.283(2) 0.61(4) 1.2 2.9 7.376 6.2 3.0(10)a 4.8(18)b 70(20)c

151Nd 0.314(10)d 0.54(3) 0.4 2.6 5.335 6.0 169(11) 0.43(9) 67(25)

aAdjusted to reproduce ρ(Sn).
bEstimated from systematics [12].
cEstimated from 144,146,148Nd.
dInterpolated between even-mass neighbors.

where J is the spin quantum number. The function of the spin
cutoff parameter is given by [23]

σ 2(E ) = σ 2
d +

σ 2(Sn) − σ 2
d

Sn − Ed
(E − Ed ), (9)

where σ 2
d is determined from known discrete levels at low

excitation energy E = Ed and σ 2(Sn) is determined from the
rigid-body moment of inertia (RMI) estimate, as shown in our
previous work [12].

Table I lists the quadrupole deformations and parameters
needed for extracting ρ(Sn). The β2 values of the even-mass
isotopes are taken from the compilation of Pritychenko et al.
[27]. For the odd-mass isotopes, we assume a deformation
that is the average of their even-mass neighbors. The table
also includes the temperature TCT extracted by a χ2 fit of the
constant-temperature (CT) formula [26]

ρCT(E ) = (1/TCT) exp [(E − E0)/TCT] (10)

to the experimental high-energy data points and the predicted
ρ(Sn) value of Table I. Such a fit is shown in Fig. 3, where
ρCT was fitted to the data points in the excitation region of
E = 2.7–4.1 MeV. The energy shift parameter is given by
E0 = Sn − TCT ln[TCT ρ(Sn)]. Further details on the extraction
of NLDs in the neodymiums are given in our previous work
[12]. For convenience, we list the NLD parameters from
Ref. [12] in Table I.

The last column of Table I lists the average γ widths for
ℓ = 0 neutron capture reactions compiled in Ref. [25]. These
quantities are exploited to determine the scaling of T (param-
eter B of Eq. (7)) by reproducing the average, experimental
γ -decay width [10,28]

⟨%γ (Sn)⟩ = 1
2πρ(Sn, Ji,π )

∑

Jf

∫ Sn

0
dEγ T (Eγ )

× ρ(Sn − Eγ , Jf ), (11)

where the summation and integration run over all final levels
with spin Jf that are accessible from initial spin Ji by E1 or
M1 transitions with energy Eγ . The integral is performed with
the measured experimental ρ and T data points; however,

in the case of missing data points at the lowest and highest
energies, extrapolations are used. The Oslo method has been
extensively tested and discussed by Larsen et al. [29]. The
Oslo method software is available on the Oslo Cyclotron
Laboratory GitHub [17].

III. SPIN DISTRIBUTIONS OF THE APPLIED REACTIONS

Before we can extract the γ SFs from the first-generation
matrix, we have to consider the spin distribution populated
in these light-ion reactions compared to the intrinsic spin
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FIG. 3. Level densities of 147Nd. The open and filled square
data points show the results of the Oslo method applied with a
total (ρtot) and a reduced (ρexp) level density, respectively, having
ρexp(Sn) = 0.11ρtot (Sn). The data points of the two level densities are
connected to ρ(Sn) (shown as diamonds) with a constant temperature
(CT) model. The solid line shows the level density of known levels
[24].
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FIG. 13. (a) Comparison of γ -strength data from this work with data from the literature (Berman et al. [80], Mohr et al. [9], and Kopecky
et al. [81]), and to models included in the TALYS code (see text); (b) fit to the γ -ray strength function data of 186W and the 184W data of Kopecky
et al. [81]) (see text).

hybrid model of Goriely [85]:

f Hyb
E1 (Eγ , Tf ) = 1

3π2h̄2c2

Eγ σr$r$(Eγ , Tf )
(
E2

γ − E2
r

)2 + E2
γ $r$(Eγ , Tf )

,

(23)

where σr is the peak cross section, Er the centroid, and $r
the width of the GDR. Further, the γ -energy and temperature
dependent width $(Eγ , Tf ) is given by

$(Eγ , Tf ) = 0.7 · $r
E2

γ + 4π2T 2
f

Eγ Er
. (24)

The temperature of the final levels, Tf , is here considered as
a constant, in line with the Brink-Axel hypothesis. We also
include extra E1 strength [labeled “E1 pygmy” in Fig. 13(b)]
to make a smooth connection between our data and the
(γ , n) data. Finally, we also add a magnetic-dipole component
[marked “M1 spin-flip” in Fig. 13(b)]. For both the E1 pygmy
and the M1 spin-flip contributions, we apply a resonance-like
form using a standard Lorentzian

fPyg,M1(Eγ ) = 1

3π2h̄2c2

σPyg,M1$
2
Pyg,M1Eγ

(
E2

γ − E2
Pyg,M1

)2 + $2
Pyg,M1E2

γ

,

(25)

where σPyg,M1, $Pyg,M1, and EPyg,M1 are the peak cross section,
width, and centroid for the pygmy (Pyg) and the spin-flip (M1)
resonance, respectively. The total fit function is then given by

ftot (Eγ ) = f Hyb
E1 (Eγ , Tf = const.) + fPyg(Eγ ) + fM1(Eγ ).

(26)

For the fit, we first constrain the hybrid component by
fitting only the hybrid model to the GDR data (Mohr et al.
[9] and Berman et al. [80]) in the range Eγ = 7.7–14.5 MeV.
We choose to fix the Tf parameter to the one used for the
extrapolation of the level density (see Sec. III C) to ease the

fit, as Tf is largely determined from the γ -strength function
below neutron threshold. From this fit, we determine the GDR
parameters σr , Er , and $r , to be used as start values for
the next fit including the data for γ energies below neutron
threshold as well.

For the spin-flip part, we use a fixed centroid EM1 taken
from systematics [66], and a fixed width of $M1 of 2.5 MeV.
The peak cross section σM1 is then found from a fit to the
M1 data of 184W from Kopecky et al. [81]. Then we make a
fit using the full energy range Eγ = 1.0–14.5 MeV, with only
the spin-flip parameters fixed, and with the first fit of the GDR
data as starting values. In the fit, we include the present OCL
data of 186W, the E1 data from Kopecky et al. [81] on 184W,
and the GDR data from Mohr et al. [9] and Berman et al. [80].
The resulting fit is shown in Fig. 13(b), and the parameters are
listed in Table II. As this model fit will be used to calculate
the (n, γ ) cross section and reactivity in the following section,
we repeat the fit for all the different normalizations (varying
D0, $γ 0, σJ and taking into account % f ). All fits are per-
formed within the ROOT software tool [87] using the Minuit
package.

The resulting fit function gives a reasonable description of
the strength function data, although we note a potential issue
in that the region between Eγ = 6–8 MeV contains practically
no data points for 186W. Moreover, the 184W data points from
primary transitions following neutron capture typically have
large fluctuations. Hence, it is very difficult to assess the actual
parameters for the E1 pygmy, and the deduced parameters
given in Table II should be used with caution.

We also remark that the data points at the lowest γ ener-
gies, Eγ < 1.5 MeV, might indicate some low-energy increase
in the γ -strength function, as first observed in iron isotopes
[88]. However, in contrast to clear cases like 56Fe [71,72,88],
it is hard to conclude here as there are only a few data points
that might show an increasing trend. We therefore choose not
to include an extra “up-bend” component in the fit.
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Recent experiments at OCL
a) 93Nb + 16-MeV protons, April 2025

PI: Sivahami Uthayakumaar (FRIB), Ann-Cecile Larsen
Motivation: The 92Nb(n,ɣ)93Nb is one of the most important reactions for the destruction of 92Nb in the p-process nucleosynthesis. We aim to constrain this un-measured reaction cross section and astrophysical reaction 
rate by using the level density and gamma strength function from the Oslo method on the 93Nb(p,p’ɣ) data set.

b) 106Pd, 59Co, 27Al + 16-MeV protons, June 2025
PI: Vetle W. Ingeberg, Ann-Cecilie Larsen, Kevin Li
Motivation: The PSF of 59Co was recently published from a NRF experiment and has an unusual shape. The 27Al is of interest in supernova nucleosynthesis and are close to the limit of the Oslo method. In 106Pd there 
are discrepancies in the nuclear level density and between the models of the NLD.

c) 154Sm + 30 MeV alphas, August 2025
PI: Lauren T. Bell, Sunniva, Ann-Cecilie Larsen
Motivation: We want to to investigate the impact of angular-momentum transfer on the level density and gamma strength function of 154Sm by comparing the 154Sm(a,a'g) data to previously taken data on 154Sm(p,p’g)
Bonus: We also got data on the exotic, n-rich 155,156Eu through the 154Sm(a,tg)155Eu and 154Sm(a,dg)156Eu reaction channels, respectively, of interest for the intermediate neutron-capture process

d) 130Te + 30 MeV alphas & 130Te + 24 MeV alphas, September 2025
PI: Claudia, Therese (Master students), Ann-Cecilie, Maria
Motivation: to get level densities and gamma strength for 132I and 131I through the reaction channels 130Te(a,pg)133I, 130Te(a,dg)132I, 130Te(a,tg)131I respectively, for the i-process nucleosynthesis
Bonus: we also have a super nice 130Te(a,a'g) data set, for nuclear structure (oblate deformation, looking for the M1 scissors mode in an oblate nucleus for the first time)

e) 116Cd + 30 MeV alphas, October 2025
PI: Maria Markova, Ann-Cecile Larsen
Motivation: to get level densities and gamma strength for 116Cd through the reaction channel 116Cd(a,a’g)116Cd, to get a data-constrained 115Cd(n,g) reaction rate, of critical importance for the i-process nucleosynthesis
Bonus: we also got data on the exotic, n-rich 117,118In through the 116Cd(a,tg)117In and 116Cd(a,dg)118In reaction channels, respectively, also of interest for the intermediate neutron-capture process, and to investigate the 
pygmy dipole resonance for indium isotopes, as 109In shows almost no sign of a PDR

f) 107,109Ag + 16-MeV protons, November 2025
PI: Henrik D. Andrews, Ann-Cecilie Larsen, Sunniva Siem
Motivation: Study level densities and gamma strength functions in silver isotopes for the first time. Search for the pygmy dipole resonance. Also, i-process relevant.

g) 186W + 30 MeV alphas, November 2025
PI: Rahul Jain (LLNL), Richard Hughes (LLNL), Andrea Richard (Ohio Univ.), Ann-Cecilie Larsen
Motivation: Aim was to reach 189Re and 188Re with the 186W(a,p) and 186(a,d) reactions.
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described, e.g., in Refs. [69,70], its extensions (e.g., RQTBA)
[71,72], and the quasiparticle-phonon model (QPM) [73,74].
In these models, the PDR is understood as the oscillation
of excessive neutrons against the symmetric proton-neutron
system. This oscillation generates a bunch of 1− states with
considerable E1 strengths to the ground state in the energy
region just below Sn. Most of these calculations were carried
out for even-even nuclides near closed shells and compared,
for example, with our experimental data in nuclides at N = 50
[5,57] and near N = 82 [38,63]. The increase of PDR strength
with increasing neutron excess predicted in QRPA and QPM
calculations was experimentally proven for the series of
xenon isotopes [7]. The calculations describe usually the
gross properties of the E1 strength. Individual E1 strengths
from 1− states as well as M1 strengths from 1+ states were
described, for example, on the basis of QRPA calculations
for the N = 28 nuclide 52Cr [19]. Furthermore, shell-model
calculations were carried to describe E1 and M1 strengths
in nuclei around closed shells, such as 50,52,54Cr [20,75] and
the Z = 28 nuclide 58Ni [76]. In those studies, the gross
properties of the E1 and M1 strengths of resolved states
are reproduced in the energy region below Sn, while for the
doubly magic 208Pb also the GDR could be included in the
description [77]. A direct comparison of experimental E1 and
M1 strength functions up to Sn including the quasicontinuum
was achieved for 128Xe and 134Xe [16]. This shows that the
M1 strength amounts to about 10% of the E1 strength, which
is compatible with the results of QRPA calculations. The
observation of prominent M1 transitions from 1+ states in
nuclides aroud A = 60 may suggest that the M1 contribution
to the total strength is greater than that in heavier nuclides.
A direct comparison of E1 and M1 strength functions has
however not been performed so far in this mass region. In the
following, we confront an M1 strength function obtained from
shell-model calculations with the present experimental data.

A. Shell-model calculations

Shell-model calculations for 59Co were carried out with
the fp model space and the gx1a Hamiltonian [78,79] using
the code NuShellX@MSU [80]. The model space included the
proton and neutron orbitals (1 f7/2, 2p3/2, 1 f5/2, 2p1/2) with
the following limitations of occupation numbers to make the
calculations practicable. Two of the 1 f7/2 protons and neu-
trons were allowed to be excited to the (2p3/2, 1 f5/2) orbitals
and two neutrons also to the 2p1/2 orbital. This means that up
to two protons can occupy the (2p3/2, 1 f5/2) orbitals while no
limitations were applied for occupation numbers in the neu-
tron (2p3/2, 1 f5/2, 2p1/2) orbitals. The calculations included
the lowest 250 states each with Jπ = 5/2−, 7/2−, and 9/2−

that reach energies up to about 9 MeV. Reduced transition
strengths B(M1) were calculated using effective g factors of
geff

s = 0.74gfree
s [81]. The calculated spectrum shows strong

transitions between 1 and 3 MeV, whereas the lowest transi-
tions in the even-mass nuclides 54Fe, 64Ni, and 66Zn appear
above 3 MeV [23–25]. The individual B(M1) strengths in
59Co are on average smaller, but the running sum up to 9 MeV
is comparable with those in the even-even nuclides. The M1
strength function was deduced according to the prescriptions

FIG. 7. Dipole strength function deduced from the present ex-
perimental absorption cross section of 59Co (red circles) and M1
strength function obtained from shell-model calculations (black line)
for transitions from the lowest 250 states each of spins 5/2−, 7/2−,
and 9/2− states to the ground state.

given, for example, in Refs. [82,83] and includes the 750
transitions from the 5/2−, 7/2−, and 9/2− states to the 7/2−

ground state in energy bins of 0.1 MeV width, averaged over
excitation energies and spins. The calculated M1 strength
function is compared with the dipole strength function derived
from the present cross section data in Fig. 7. The low-energy
part of the calculated strength function is dominated by single
strong transitions while the fluctuations become smaller above
about 4 MeV and a rather statistical behavior develops. The
shape of the curve resembles the experimental one. However,
there are factors of about 5 to 10 between the M1 and the
experimental strength functions above about 5 MeV. This in-
dicates a comparably small contribution of M1 strength to the
total dipole strength in this nuclide. There is also a small peak
at about 8 MeV in the M1 strength function among others,
which is, however, too small to describe the experimental
peak at this energy. Hence, this experimental structure may be
mainly of E1 character and its explanation requires advanced
future model calculations of E1 transitions in an adequate
model space.

V. SUMMARY

The dipole-strength distribution in 59Co was studied up
to the neutron-separation energy in photon-scattering ex-
periments at the γ ELBE bremsstrahlung facility using two
electron energies. A total of 130 levels was identified. The
intensity distribution obtained from the measured spectra was
corrected for the detector response and a simulated spectrum
of photons scattered from the target by atomic interactions
was subtracted. The remaining spectrum contains a continuum
part in addition to the resolved peaks, which was included in
the determination of the photoabsorption cross section. An
assignment of inelastic transitions to particular levels and,
thus, the determination of branching ratios was, in general, not
possible. Therefore, we performed simulations of statistical
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Figure 5.2: The extracted NLD as a function of the excitation energy for the
28Si nucleus using data from the LaBr3(Ce) detectors. Symbols and line styles are
consistent with those used in Figure 5.1.
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Figure 5.6: The GSF as a function of Eω measured with the LaBr3(Ce) detectors.
From top to bottom: without rebinning, and with rebinning.
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New project on Ag
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Plan to investigate Ag nuclei with several probes

PhD project of Henrik Andrews

~ 2 hours of (p,p’)
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AVIT application, 
StarLight prototype ✨

• 3 hexagonal-shaped scintillator 
crystals made of NaI(Tl+Li) that 
can separate neutrons and 
gammas through pulse-shape 
discrimination

• Testing &characterization at OCL
• Full array financed hopefully 

through a grant in 2026/2027 [PI 
Ann-Cecilie Larsen]


