Technical Meeting on Advanced Technology Fuels:Progress on their Design, Manufacturing, Experimentation, Irradiation, and Case Studies for their Industrialization, Safety Evaluation, and Future Prospects

Contribution ID: 49 Type: not specified

OVERALL PERFORMANCE OF CR-COATED ACCIDENT TOLERANT FUEL CLADDING IN LARGE PWRS AND IMPLICATIONS FOR SMR APPLICATIONS

Friday 31 October 2025 09:50 (25 minutes)

OVERALL PERFORMANCE OF CR-COATED ACCIDENT TOLERANT FUEL CLADDING IN LARGE PWRS AND IMPLICATIONS FOR SMR APPLICATIONS

Y. LEE1, D. KIM1, H. YOOK1, S. JOUNG1, H. RHO1, K. SHIM1, B. KWEON1

1Department of Nuclear Engineering, Seoul National University, Seoul, Republic of Korea

Corresponding author: leeyouho@snu.ac.kr

After more than a decade of research into the performance of Cr-coated Accident Tolerant Fuel (ATF) cladding, the nuclear industry is now moving toward commercialization, supported by an improved understanding of its overall behavior. In several respects—such as steady-state corrosion resistance [1], steam oxidation resistance [2,3], generally crack-resistant coating behavior at elevated temperatures relevant to normal operation, and slightly reduced inward cladding creep during steady-state [4]—Cr-coated cladding demonstrates desirable performance. It also exhibits comparable fuel ballooning and burst behavior to uncoated zirconium alloy cladding [5,6], and only limited additional oxidation through cracked coatings near burst openings [6], illuminating the promise of the concept envisioned at its inception.

However, recent findings also highlight inherent limitations that may constrain the achievable operational and safety benefits. These include: (i) degradation of coating protectiveness due to Zr diffusion from the substrate, creating oxygen ingress paths through the Cr layer [3]; (ii) formation of a eutectic phase at around 1330 °C, which degrades oxidation resistance in steam and causes a sharp increase in hydrogen generation rate, thereby limiting any meaningful increase in the peak cladding temperature limit [7,8]; and (iii) significant loss of post-LOCA ductility due to oxygen uptake and secondary hydriding near the burst opening, leaving the cladding vulnerable to traditional inner-wall oxidation mechanisms [9,10]. Furthermore, Cr-coating does not mitigate over-pressurization or Fuel Fragmentation, Relocation, and Dispersal (FFRD), which remain key safety concerns for high-burnup fuels in the 24-month cycles sought by the industry [5]. In addition, the potential burnup extensions are competed by modern zirconium alloys, whose excellent corrosion resistance is sufficient to support discharge burnup extension of large PWRs (~75 MWd/kgU).

These concerns highlight the importance of rethinking the synergy between advanced fuel materials and reactor design. In line with it, low power density Small Modular Reactors (SMRs) provide operating conditions in which the advantages of Cr-coated ATF can be most effectively realized. Operating at lower linear heat rates giving lower fuel temperature and offering more graceful accident scenarios with no risk of fuel burst, SMRs can fully capitalize on the superior corrosion resistance of Cr coatings. This could enable ultra-long cycles and burnup extension with LEU+ fuels, aligning with operational and economic incentives. We believe that such applications deserve increased attention and could define a future strategic direction for SMR and Cr-coated ATF deployment.

ACKNOWLEDGEMENTS

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (No. 20224B10200100, Development of Commercialization Technology for Enhanced Accident Tolerant Fuel) (50 %), and Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (No. RS- 2025-02633904, Center for Advanced Nuclear Fuel Innovation) (50%).

REFERENCES

- [1] Kyuseok Shim, Hyuntaek Rho, Chansoo Lee, Changhyun Jo, Youho Lee. GIFT-1.0: Advanced Light Water Reactor Fuel Performance Code. Nuclear Engineering and Technology, Volume 57, Issue 9, September, 103567. 2025
- [2] Hyeongtak Kang, Dongju Kim, Martin Ševeček, Youho Lee, Parabolic Oxidation Behavior of Various Chromium-coated Zr-Nb Alloy Claddings. Journal of Nuclear Materials, 615, 155946. 2025
- [3] Dongju Kim, Youho Lee, Mechanisms of Steam Oxidation-induced Degradation of Chromium Coating on Zirconium Alloys at High Temperatures. Corrosion Science, Volume 254, 113055. 2025

- [4] Jinsu Kim, Chung Yong Lee, Hyuntaek Rho, Hun Jang, Youho Lee. Elucidating changes in thermal creep rate of Zircaloy Accident Tolerant Fuel (ATF) cladding with thin chromium coating via experiment and mechanical analysis Journal of Nuclear Materials, 592, 154947. 2024
- [5] Hyunwoo Yook, Sunghoon Joung, Chansoo Lee, Youho Lee. Integral LOCA experiments to study FFRD behavior of high burnup nuclear fuels. Nuclear Engineering and Design, 429, 113633. 2024
- [6] Hyunwoo Yook, Sunghoon Joung, Youho Lee, Post-Ballooning and Burst Steam Oxidation of Accident Tolerant Zirconium Alloy Cladding with Cracked Chromium Coating. Journal of Nuclear Materials, 616, 156095. 2025
- [7] SungHoon Joung, Hyunwoo Yook, Dongju Kim, Youho Lee. Exploring the Peak Cladding Temperature Limit of Cr-Coated ATF by Assessing the Impact of the Zr-Cr Eutectic on the Structural Integrity of Cladding. Journal of Nuclear Materials, 155577. 2024
- [8] Dongju Kim, Martin Sevecek, Youho Lee. Characterization of Eutectic Reaction of Cr and Cr/CrN coated Zircaloy Accident Tolerant Fuel Cladding. Nuclear Engineering and Technology, 55, 3535-3542.
- [9] Hyunwoo Yook, Koroush Shirvan, Bren Phillips, Youho Lee. Post-LOCA Ductility of Cr-coated cladding and its embrittlement limit. Journal of Nuclear Materials, 153354. 2022
- [10] SungHoon Joung, Jinsu Kim, Martin Ševeček, Juri Stuckert, Youho Lee. Post-quench ductility limits of coated ATF with various base zirconium-based alloys and coating designs. Journal of Nuclear Materials, 591, 154915. 2024

Author: LEE, Youho (Seoul National University)

Co-authors: Ms KWEON, Boyeon (Seoul National University); Mr KIM, Dongju (Seoul National University); Mr RHO, Hyuntaek (Seoul National University); Mr YOOK, Hyunwoo (Seoul National University); Mr SHIM, Kyuseok (Seoul National University)

Presenter: LEE, Youho (Seoul National University)

Session Classification: 5

Track Classification: Future prospects of ATF