
An Introduction to

Dr. Patrick Shriwise
On behalf of the ONCORE group
August 13th, 2025



Today’s Webinar

● An introduction to OpenMC
● Geometry
● Materials
● Simulation
● Tallies
● Post-processing
● Wrap-up and questions

2



Webinar Goals

Today’s demonstration will occur in a Jupyter lab instance, but the same applies 
in any Python environment

● Provide a basic understanding of OpenMC
● Understand different core components
● Understanding of basic simulation execution and result processing

3



OpenMC

An open source Monte Carlo particle transport code.

● Provides a general solution to the radiation transport equation
● Applies to nuclear reactors, fusion devices, radiation shielding
● Transport executed using C++
● Python interface for model creation and post-processing
● Monte Carlo Advantages: 

○ continuous energy treatment of transport
○ no spatial approximations necessary

● Monte Carlo Disadvantages:
○ time to solution/computational cost

4



What makes OpenMC unique?

● Programming interfaces (C++ & Python)
● Nuclear data interfaces and 

representation
● Tally abstractions
● Parallel performance
● Development workflow and governance
● Structured text input format (XML)

5



Navigating the Python API

Naming conventions:

- Module names are lowercase

- Functions are 
lowercase_with_underscores

- Classes are CamelCase

- Class attributes/variables are 
lowercase_with_underscores

- Top-level (global) variables are 
UPPERCASE_WITH_UNDERSCORES

To give a few specific examples:

- openmc.deplete is the depletion 
module

- openmc.run is a function

- openmc.MaterialFilter is a class

- openmc.MaterialFilter.id is a 
class attribute

- openmc.data.ATOMIC_NUMBER is a 
top-level variable

6

http://openmc.material.id


OpenMC Resources

● Code: https://github.com/openmc-dev/openmc
● Docs: https://docs.openmc.org
● Nuclear Data: https://openmc.org
● Forum: https://openmc.discourse.group

7

https://github.com/openmc-dev/openmc
https://docs.openmc.org
https://openmc.org
https://openmc.discourse.group


Today’s Demonstration

Today we’ll be modeling a simple PWR pincell and performing some basic 
analysis with user-defined tallies

Software:

● OpenMC (version 0.15.2)
● matplotlib
● pandas
● numpy

8



Materials

9



Creating materials

Uses the openmc.Material object in the Python module:

material = openmc.Material

Important methods:

● Material.set_density
● Material.add_nuclide
● Material.add_element
● Material.add_s_alpha_beta

Other methods of note:

Material.mix_materials, Material.add_elements_from_formula

10



Geometry

11



Geometry

OpenMC relies on two types of geometry representations:

Constructive solid geometry (CSG) CAD-based surface tessellations (DAGMC)

12



Constructive Solid Geometry (CSG)

A plane perpendicular to the x axis: 

A cylinder parallel to the z axis: 

A sphere: 

Full surface list

13
Advanced Test Reactor

https://docs.openmc.org/en/stable/usersguide/geometry.html#id2


Making geometry in OpenMC

Surfaces: definitions of the boundaries between materials

openmc.Sphere, openmc.ZCylinder, openmc.XPlane, openmc.Plane, …

Regions: compositions of surface half-spaces 

- → negative halfspace, + → positive halfspace

& → intersection; | → union; ~ → complement

upper_hemisphere = -sphere & +midplane

Cells: the connection of a region and material

cell = openmc.Cell(fill=uranium_oxide, region=inside_sphere)

Universes: collections of cells that can be re-used/repeated

universe = openmc.Universe(cells=[cell]) 14



Boundary Conditions

The following boundary conditions are supported in OpenMC

● vacuum
● reflective
● periodic (must be set on two surfaces)
● white

15



Temperatures

Temperatures can be set for either cells or materials (in K).

If a temperature is set on cell and the material being used to fill the cell, the cell 
temperature will apply.

Cross section data is evaluated a specific temperatures, so temperature 
treatment is handled in a couple of ways in OpenMC:

● nearest temperature
● temperature interpolation
● windowed multipole

16

https://docs.openmc.org/en/stable/methods/cross_sections.html?highlight=temperature#temperature-treatment
https://docs.openmc.org/en/stable/methods/cross_sections.html?highlight=temperature#temperature-treatment


Simulation

17



Executing OpenMC

There are several ways to execute OpenMC

From the terminal:*

$ openmc

A Python module-level call*:

openmc.run()

A call on a Python openmc.Model object:

model = openmc.Model

...

model.run()

* both of these methods expect that XML files are present in the current directory 18



A note on parallelism

OpenMC utilizes two types of parallelism: distributed memory (MPI) and shared 
memory (threading) 

When used in tandem, the number of CPU cores used is the number of MPI 
processes multiplied by the number of cores. For example, the following terminal 
command would use 40 cores.

$ mpiexec -n 4 openmc -s 10

equivalent command in Python

>>> model.run(mpi_args=[’mpiexec’,’-n’,‘4’], threads=10)

19



Tallies & Post-Processing

20



OpenMC Tallies

Any tally in OpenMC can be described with the following form:

where filters set the limits of the integrals and the scoring function is convolved 
with particle information (e.g. reaction type, current material, etc.).

List of filters List of Scores

21

https://docs.openmc.org/en/stable/pythonapi/base.html#pythonapi-tallies
https://docs.openmc.org/en/stable/usersguide/tallies.html#scores


Statepoint files

Statepoint files are binary files containing the results of an OpenMC simulation, including any specified 
tallies.

Object creation:

statepoint = openmc.StatePoint(‘statepoint.10.h5’)

...

statepoint.close()

Context manager (recommended):

with openmc.StatePoint(‘statepoint.10.h5’) as sp:

simulation_time = sp.runtime[‘simulation’]

22



Wrap-up and Questions

23


