

An Overview on Development of Codes and Standards for Tokamak Fusion Power Plant in Japan

- Bridge Program "Fusion energy system Standardization" (BFS) -

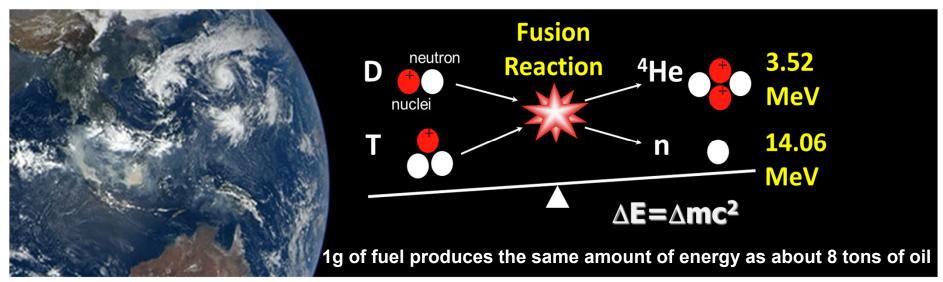
M. Nakahira*, H. Nakajima* and E. Tada*

* National Institutes for Quantum Science and Technology (QST)

Technical Meeting on Experience in Codes and Standards for Fusion Technology, IAEA 19 Nov. 2025

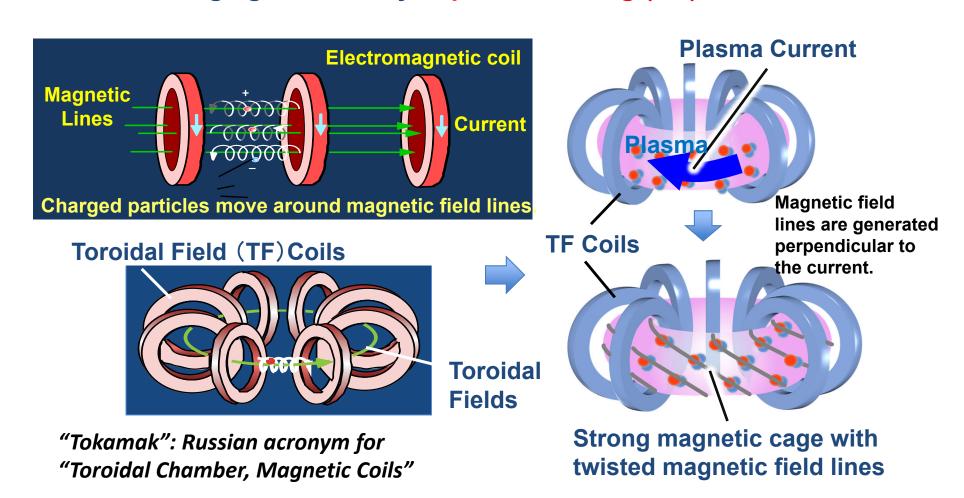
An Overview on Development of Codes and Standards for Tokamak Fusion Power Plant in Japan

Contents:


- Introduction
- ITER
- Formulation by The Japan Society of Mechanical Engineers (JSME)
 Code Committee
- Example of Unique JSME Fusion Magnet Code Contents
- Approach on System Based Standards
- Collaboration of development the tokamak code for Fusion Demo Facilities between JSME and the American Society of Mechanical Engineers (ASME)
- Conclusion

Introduction: Unique Safety Nature in Fusion Reaction

- Heat Deuterium (D) & Tritium (T) to several thousand degrees ⇒ Plasma
- Heat DT Plasma over 100 million degrees, and then nuclei fuse together
- 1g of fuel produces the same amount of energy as about 8 tons of oil
- Single reaction only under limited conditions, no melt-down possible
- Inherent safety: self-shutdown by very small amounts of impurities (LBB utilized)
 and by temperature and density fluctuations outside operating range
- Low hazard potential: several tenths lower than that of a 1MW fission reactor, safety requirement almost the same as ASME Sec. III ND or Sec. VIII-Div.1.
- Unlimited and non-localized fuel in seawater for millions of years



Introduction: Tokamak Fusion Facility

High Temperature Plasma confined by magnetic cage generated by superconducting (SC) coils

ITER: Tokamak Configuration

Fusion Specific Components and Design Parameters

Center Solenoid (CS)

inducing plasma current 4-m dia., 16-m high, 13 T

Poloidal Field (PF) Coil shaping and positioning 8 - 26 m dia.. 6 coils

4-6 T, NbTi

Vacuum Vessel (VV)

vacuum for plasma, shielding for SC coils D-shaped and double wall structure ~4,000 ton

Plasma 840 m³

Divertor

Exhausting impurities, shielding for SC coils

54 cassettes, 10-20 MW/m²

Toroidal Field (TF) Coil confining plasma
9 x 17 m, 18 coils, 12 T

Heating & Current Drive

high energy (1 MeV) beam & high frequency heating (170 GHz)

Blanket

Converting from nuclear heat to thermal energy, shielding for SC coils 4 ton x 400 modules

4 ton x 400 modules (Breeding Tritium in Demo facility)

SC coils: non-safety, magnetic confinement, electromagnetic (EM) force VV: safety enclosure (tritium & radioactive materials), shielding, EM force In-vessel components: non-safety, operational functions, shielding, EM force

Formulation by JSME Code Committee

Superconducting Magnet (SC Coil) Structure Standards

1998	Activity of code development for fusion facilities was started in consideration of siting the ITER in Japan.
2001	A collaboration work between Thermal and Nuclear Power Engineering Society (TENPES), ASME and the Advisory Group (AG), chaired by Mr. R. W. Barnes, was started.
2002.7	Subcommittee on Fusion Power was established in JSME to start code activity for fusion facility. All activities and rights were conferred to JSME from TENPES.
2005	ITER site was determined in France and activities in JSME were suspended.
2006	Activity of code development was resumed with concentrating to the ITER TF
	coil structures as JA procurement.
2008 Mar	Final varsion approval at Main committee on Dower Congretion Facility Codes
	Final version approval at Main committee on Power Generation Facility Codes Public comments
	Public comments JSME S KA1-2008 Codes for Fusion Facilities – Rules on Superconducting Magnet Structure – (Japanese)
Jun - Aug	Public comments JSME S KA1-2008 Codes for Fusion Facilities – Rules on Superconducting
Jun - Aug Oct	Public comments JSME S KA1-2008 Codes for Fusion Facilities – Rules on Superconducting Magnet Structure – (Japanese) JSME S KA1-2008 Codes for Fusion Facilities – Rules on Superconducting
Jun - Aug Oct 2010 Sep	Public comments JSME S KA1-2008 Codes for Fusion Facilities – Rules on Superconducting Magnet Structure – (Japanese) JSME S KA1-2008 Codes for Fusion Facilities – Rules on Superconducting Magnet Structure – (English translation)
Jun - Aug Oct 2010 Sep	Public comments JSME S KA1-2008 Codes for Fusion Facilities – Rules on Superconducting Magnet Structure – (Japanese) JSME S KA1-2008 Codes for Fusion Facilities – Rules on Superconducting Magnet Structure – (English translation) JSME S KA1-2013 Codes for Fusion Facilities – Rules on Superconducting
Jun - Aug Oct 2010 Sep 2014 Jan	Public comments JSME S KA1-2008 Codes for Fusion Facilities – Rules on Superconducting Magnet Structure – (Japanese) JSME S KA1-2008 Codes for Fusion Facilities – Rules on Superconducting Magnet Structure – (English translation) JSME S KA1-2013 Codes for Fusion Facilities – Rules on Superconducting Magnet Structure – (Japanese + English translation)

Material and Fabrication parts were applied to fabrication of ITER TF Coils procured in Japan

RIDGE Formulation by JSME Code Committee

Basic concepts of the JSME code

- (1) A safety requirement is almost the same as ASME Sec.III ND or Sec.VIIIdiv.1 because the hazard potential of fusion machine is similar to a general structure or general pressure vessel.
- (2) Design by analysis, which is used in ASME Sec.III NC or Sec.VIII-div.2, is adopted to ensure mechanical integrity of the structure having a complex geometry operated under complicated distributions of static and cyclic loadings.
- (3) The code is developed from the existing ones taking into account of features of technical consistency between the existing codes, the features of the superconducting coils, manufacture experiences, and a lot of studies performed in these over 30 years on cryogenic structural materials.
- (4) Postulation of very rare hypothetical events and evaluation of their consequences are regarded as non-mandatory because they do not have a significant meaning in operation of the fusion magnets.
- (5) Over-conservative requirements are avoided as much as possible because the TF coil structured is not a radiological safety component.
- (6) Rules of conformity assessment and quality assurance are included as a part of the code.

Formulation by JSME Code Committee

Standardization and Globalization for Tokamak Fusion Demo Reactor

JSME Code Committee Organization

Main Committee on Power Generation Facility Code

Subcommittee on Thermal Power

Subcommittee on Nuclear Power

Subcommittee on Material

Subcommittee on Fusion Reactors

Subgroup on metal structure

Subgroup on non-metal structure

Subgroup on maintenance (planning)

As the initial work plan, focus on fusion specific components such as SC coil, VV, In-vessel components, Tritium facility, and prioritize technical investigation based on ITER experience, latest knowledge and ITER and Demo design.

ITER experience for rationalization

- Review of System Based Standards
- Experience in design, fabrication, etc.

Practice in nuclear power/existing plants

- Investigation on the latest knowledge
- Advanced structural design, maintenance, etc.

ITER to Demo design

- Progressive development of standardization
- Risk based maintenance plan (JSM)

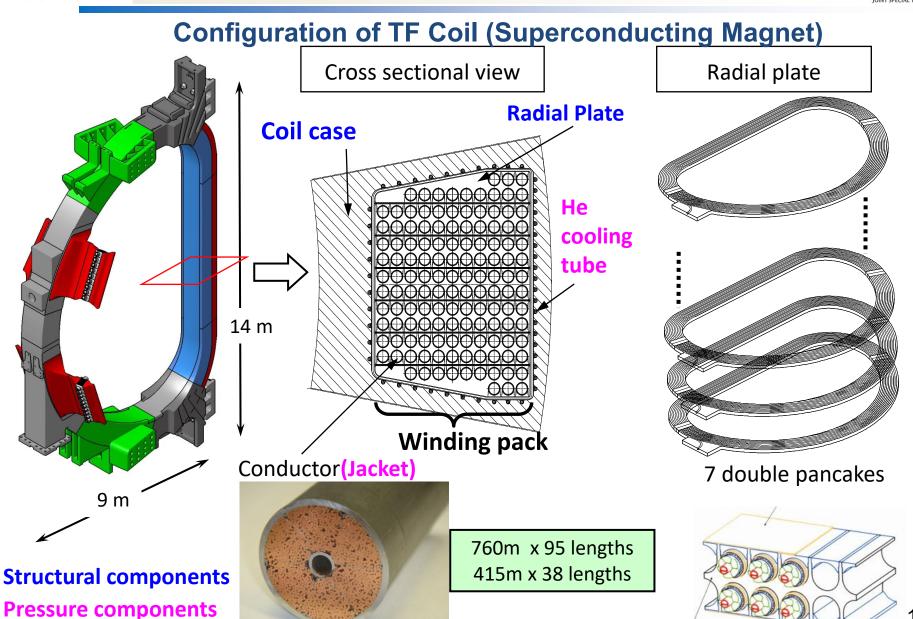
Demo Codes & Standards (JSME)

- System Based Standards update
- Entire lifecycle: design ~ operation

APPENDIX 4A APPENDIX 4B

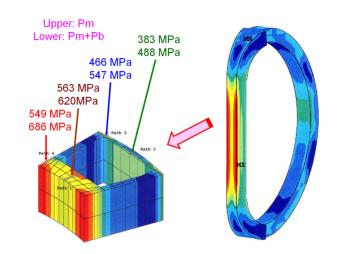
Formulation by JSME Code Committee

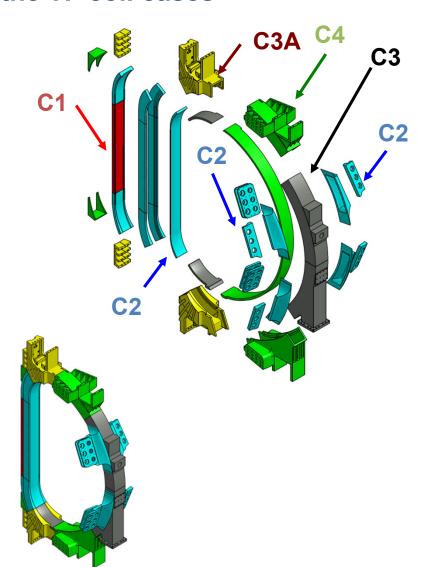
Structure of SC Coil Structure Standards


 MAIN TEXT FM-1000 Scope, roles and responsibilities Red: JSME specific FM-2000 Material Blue: partially JSME specific FM-3000 Design Black: collaboration with ASME FM-4000 Fabrication (HIP) FM-5000 Non-destructive examination FM-6000 Pressure and leak testing FM-7000 Glossary APPENDICIES (Mandatory) **APPENDIX 11** Qualified inspection for superconducting magnet APPENDIX 12 Duties of standard-expert engineers for superconducting magnet Standard for structural material APPENDIX 21 APPENDIX 22 Specification for welding material Guideline for applying new material APPENDIX 23 Design fatigue curve (4K) APPENDIX 31 Welding joints APPENDIX 41 Qualification of HIP diffusion bonding process **APPENDIX 42** Ultrasonic examination method APPENDIX 51 APPENDICIES (Non-mandatory) Guidelines for quality assurance APPENDIX 1A Material properties other than yield and tensile strength APPNEDIX 2A Rules for evaluation of service condition with limit set which exceeds limit sets 1, 2 APPENDIX 3A and 3 APPENDIX 3B Fracture mechanics evaluation APPENDIX 3C Experimental fatigue analysis for cyclic load

Characteristic data of HIP diffusion bonded part

Technical background of rules for fabrication with hip diffusion bonding





Materials used in the TF coil cases

ITER Class	ITER 4K YS Requirements	Material to be used
C1	>1000MPa	JJ1
C2	>900MPa	316LN (C+N≥0.20%)
C3	>700MPa	316LN
C3A	and at RT >260MPa	(C+N≥0.15%)
C4	>500MPa	316LN (C+N≥0.08%)

Features of the JSME code: Material (3)

FM-2700 Design Yield Stress & Tensile strength

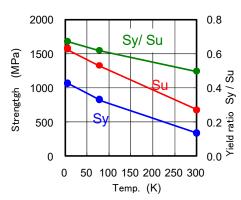
- Design yield stress and tensile strength of the material of which cryogenic design strength is not specified are those specified in Materials Standard, Table FM-2110-1, except for Y316L, YCu and YNiCr-3.
- Design yield stress and tensile strength of the material of which cryogenic design strength is specified such as FMJJ1, FM316LNL are given by the following equations except for FMYJJ1.

$$S_{v} = A_{1}T^{2} + A_{2}T + A_{3} \qquad (2-1)$$

$$S_u = B_1 T^2 + B_2 T + B_3 \qquad (2-2)$$

where, coefficients of A_1 - A_3 and B_1 - B_3 are given in Table FM-2710-1 and unit of T is Kelvin.

➤ Design yield stress and design tensile strength in increment of 50 K by obtained from equations (2-1) and (2-2) are shown in Table FM-2710-2 and Table FM-2710-3.

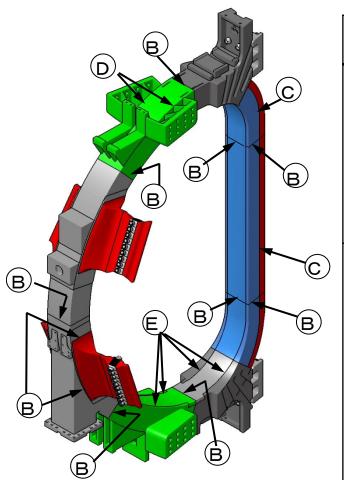


Flow of assessment for primary and secondary stress

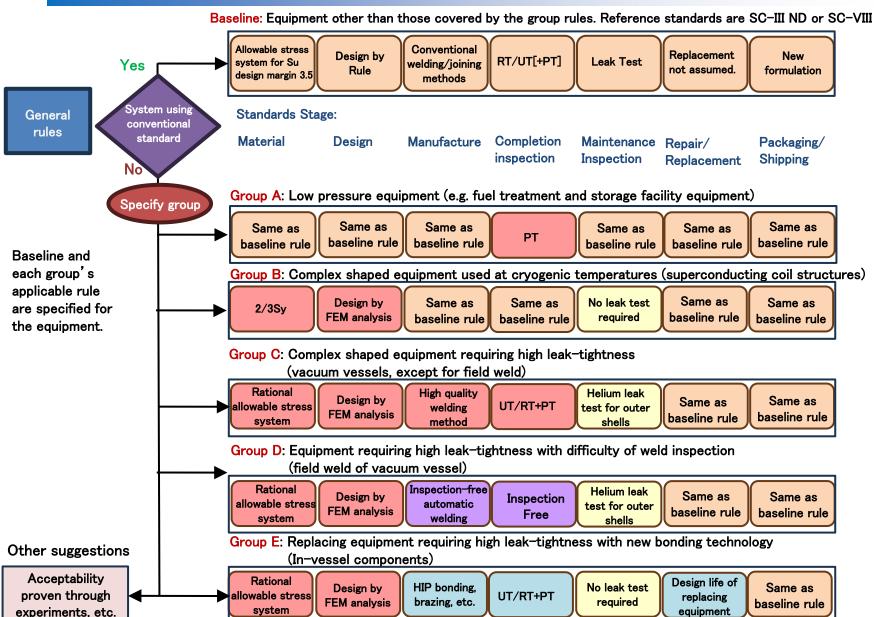
				•	
Classification of Stress		Primary Stress		Secondary Stress	Peak Stress
	General	Local	Bending	Membrane	
	Membrane Stress	Membrane Stress	Stress	Stress and Bending Stress	
Symbol	P_m	P_L	P_b	Q	F
Combination of Stresses and Limit of Stress Intensity Limit Set 1-3	P_m	$\frac{P_L}{P_L} - \frac{N}{1.5K}$ $\frac{P_L}{P_m(P_L) + 1.5K}$ $\frac{2}{3} S_y$	$(Note3) (1 - 5KS_m)$ $< P_L + P_b$	$(Note5)$ $(Note5)$ (S_m)	(Note5) (Note7)

Limit set	К
I	1.0
П	1.1
Ш	1.2

Tensile property of FMJJ1


Allowable stress for determination of wall thickness of jackets and helium piping

$$\sigma_a = \min(\frac{2}{3}S_y, \frac{1}{3.5}S_u)$$


Joint Categorization

B
Joint categorization(1) (APPENDIX 41)

		Category	NDE, testing requirements		
)	Α	Welded joint requiring high leak tightness	Volume + Surface	RT or UT	
				+ (PT or ECT) + VT	
				+ Pressure test + Leak test	
	В	Welded joint not requiring leak tightness and retaining expanding EM loads induced by self-magnetic field	Volume + Surface	RT or UT or PPT	
				+ PT + VT	

RT:Radiography, UT:Ultrasonic, ECT: Eddy Current PT:Liquid Penetrant, VT:Visual, PPT:Progressive PT

ASME Sec. III

ASME/JSME Joint
Task Group for
Tokamak Code (JTG):
coordination &
harmonization

ASME Sec. III Div.4

SG Fusion Energy Devices

SWG for Fusion Stakeholders

WG General Requirements

WG Magnets

WG Vacuum Vessel

WG Materials

WG In-Vessel Components

SWG Division 4 Updates

JSME Main Committee on Power Generation Facility Code

Working Group on Tokamak Code (TCWG)

- Review of PT draft proposal
- Formulation of Japanese TC
- Update of Japanese TC
- Recommending R&D
- Working with AG & PT
- Coordination with JTG & Div.4 WGs

Subcommittee on Fusion Power
Chair: Nakahira

Subgroup on Metal Structure

Subgroup on Non-metal Structure

Advisory Group (AG)

- Review and revise of TCWG/PT TC
- Update of English TC
- Recommending R&D
- Working with TCWG & PT
- Coordination with JTG & Div. 4 WGs

Bridge program
"Fusion energy system
Standardization"(BFS)

Program Director: Tada Project Leader: Nakahira Project Subleader: Nakajima

Project Team (PT) / QST Demo Team

- 1 Draft proposal of Tokamak Code
- System Based Code update
- Fusion specific components
- ② R&D and test facilities
- R&D plan for Tokamak Code
- Mechanical & engineering data acquisition
- ③ Innovative technology & HR development

Industries & Institutions

Academic Society

Conclusion

- JSME SC Magnet Structure Standard prescribes general and technical requirements for construction of superconducting magnet for fusion facility.
- The standard contains rules for structural materials including cryogenic materials, structural design considering magnetic forces, manufacture including welding and installation, nondestructive testing, pressure proof tests and leak tests of TF coil structures.
- The standard covers requirements for structural integrity, deformation control, and leak tightness of all the components of the superconducting magnets and their supports, considering unique safety nature and structural features to avoid over-conservatism.
- JSME and ASME started collaborative work to develop a Tokamak Code.

Reference

SC Coil Structure Standards Published (PVP2009)

Proceedings of PVP2009 2009 ASME Pressure Vessels and Piping Division Conference July 26-30, 2009, Prague, Czech Republic

- [1] Yuji Nakasone, Yukio Takahashi, Arata Nishimura, Tetsuya Suzuki, Hirosada Irie, Masataka Nakahira, JSME CONSTRUCTION STANDARD FOR SUPERCONDUCTING MAGNET OF FUSION FACILITY: "GENERAL VIEW OF THE CODE", ASME PVP2009-78018, Prague
- [2] Tetsuya Suzuki, Arata Nishimura, Hideo Nakajima, JSME CONSTRUCTION STANDARD FOR SUPERCONDUCTING MAGNET OF FUSION FACILITY "QUALITY ASSURANCE", ASME PVP2009-77337, Prague
- [3] Arata Nishimura, Hideo Nakajima, JSME CONSTRUCTION STANDARD FOR SUPERCONDUCTING MAGNET OF FUSION FACILITY "MATERIAL", ASME PVP2009-77825, Prague
- [4] Yukio Takahashi, Shigeru Tado, Kazunori Kitamura, Masataka Nakahira, Junji Ohmori, Yuji Nakasone, JSME CONSTRUCTION STANDARD FOR SUPERCONDUCTING MAGNET OF FUSION FACILITY "PROCEDURE FOR STUCTURAL DESIGN", ASME PVP2009-77991, Prague
- [5] Masataka Nakahira, Kenichiro Niimi, Hirosada Irie, JSME CONSTRUCTION STANDARD FOR SUPERCONDUCTING MAGNET OF FUSION FACILITY "FABRICATION, INSTALLATION, NDE AND TESTING", ASME PVP2009-77639, Prague
- [6] Hideo Nakajima, Katsutoshi Takano, Fumiaki Tsutsumi, Katsumi Kawano. Kazuya Hamada, Kiyoshi Okuno, "QUALIFICATION OF CRYOGENIC STRUCTURAL MATERIALS FOR", ASME PVP2009-77553, Prague
- [7] Kiyoshi Okuno, Hideo Nakajima, Yoshikazu Takahashi, Norikiyo KoizumiJSME "PROGRESS IN ITER PROJECT AND ITS SUPERCONDUCTING MAGNET SYSTEM", ASME PVP2009-77478, Prague

Thank you very much for your attention