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Issues in selecting C&S for Fusion SSCs
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• C&S are developed to comply with regulations, but there is no harmonized regulatory framework for fusion 
installations.

• Existing C&S address SIC components in fission plants but fusion plants have different safety challenges 
compared to fission.

• “Mission critical” components (magnets, IVCs) may not be SIC and exempted from regulation but must still 
be designed, manufactured and operated to the highest quality standards (investment protection).

• The wide range of operating conditions of fusion SSCs (operating temperatures from 4 K to 2000 K, EM loads 
linked to electrical functionality,  strong cyclic operation, effects of 14 MeV neutron irradiation, plasma-wall 
interactions leading to materials degradation, etc.) are not covered by any single existing industrial code.     

A multi-code approach was selected from the beginning for ITER SSCs, 
complemented by specific design rules and Technical Specifications
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C&S for mechanical components used in the ITER Project 
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Industrial codes:

• RCC-MR(x): for primary confinement barrier (VV) and 
SIC/nuclear components under ESPN regulation (TBM).

• ASME (non-nuclear): for piping, valves, pumps, vessels and 
SIC classified under the EU PED/ESP regulation (CWS).

• EN standards: for selected components, complementary to 
ASME for specific EU regulation requirements.

ITER  Specific:

• SDC-IC: for IVCs, to take into account neutron irradiation 
effects and fusion specific material properties. Includes 
Design By Experiment for DIV.

• Magnet-SDC: for cryogenic temperatures, where loss of FT 
and defects acceptability are the main concern.

• Technical Specifications: for non-standard components and 
ITER (fusion) specific requirements (Tritium, Vacuum…).

ITER had to produce additional 
documentation to justify the coherency and 

consistency of the different codes
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The EUROfusion and F4E strategy: following the ITER approach for IVCs
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EUROfusion, in collaboration with F4E, is following a similar approach for IVCs:

We are supporting F4E in the development of RCC-MRx:

• RCC-MRx is the code selected for the EU TBMs (ESPN N2 components). 

• We are focusing on the codification of EUROFER97 material properties, both for base metal and joints in 
irradiated and non-irradiated conditions and the validation of (elastic) design-by-analysis rules.

• These developments, and the corresponding lessons learned will be essential for the development of C&S 
for DEMO IVCs (not only the BB) .

We are developing the DEMO Design Criteria for In-vessel Components (DDC-IC), with 
multiple aims:

• Complement and extend design rules in existing C&S to cover the operational domain of DEMO IVCs (higher 
doses, higher temperatures, different materials than ITER).

• Act as a guideline for designers, providing references on how to use existing C&S and integrate DDC-IC rules 
in the design assessment.

• Provide alternative damage classification schemes able to capture the specific failure modes of fusion IVCs 
and their consequences in terms of functionality. 
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Collaboration with F4E: introduction of EUROFER in RCC-MRx
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F4E- OFC-1497-01: 
supply of services for the technical management, codification 

and justification of the integration of EUROFER steel in the 
RCC-MRx code for ITER TBMs application.

EUROfusion WPMAT/MAT-TBM:
characterization of EUROFER batch 3 and 4 

according to AFCEN  “Guide for introducing a new 
material in RCC-MRx”.

EUROfusion is in charge of providing basic material 
properties and performing dedicated experiments 

for validation of design rules

F4E (with partners CEA and FRAMATOME) is in charge 
of post-processing the data to derive design allowables 

and submit corresponding DRMx to AFCEN 

Courtesy of Y. Poitevin (F4E)
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Non-irradiated/Base Metal Test types
Nb tests 

MAT-TBM

Nb tests 

done
% achieved

Plain/Notched Tensile 20 20 100%

Plain/Notched 4 Points Bending 6 6 100%

Ratcheting Tension/Torsion Cyclic 44 4 10%

Uniaxial Ratcheting* Stress-controlled Cyclic Uniaxial 90 133 100%

Creep-Fatigue Cyclic Uniaxial 60 55 90%

Fatigue-Relaxation Cyclic Uniaxial 25 18 70%

Sm after Cyclic Softening Cyclic + Tensile tests 60 22 40%

Sigma d CCT 32 0 10%

Fatigue* Strain-controlled Cyclic Uniaxial 107 104 97%

Fracture Toughness Compact Tension (CT) 40 27 70%

Creep* Tensile Creep 72 44 60%

Fatigue Crack Growth Cyclic CT 16 0 10%

Irradiated/Base Metal Test types Nb tests Nb tests Achieved (%)

Plain/Notched Tension 20 20 100%

Plain/Notched 4 Points Bending 9 9 100%

Tensile Properties* Cylindrical Tensile 149 81 55%

Irradiation Creep* Creep pipes 34 24 70%

Fracture Toughness* CT and Disk CT 90 42 50%

Immediate Plastic Flow Localization

Immediate Plastic Flow 

Localization*

Creep-Fatigue Interaction



Collaboration with F4E: manufacturing techniques for the EU-TBMs
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F4E- OMF-1070: 
Weldability study and preliminary Welding Procedure 
Specifications (pWPS) for TBM and sub-components 

YAG laser welding + Hot Isostatic Pressure (HIP) Diffusion 
Welding (DW) 
• Cooling Plate-reference process (thickness 6.5 mm)
• Stiffening Plates(thickness 11 mm)
• Side Caps / First wall (thickness 30 mm)

Tungsten Inert Gas (TIG) welding with and without filler material 
• TBM box assembly (30 mm)

2-step HIP process – low pressure & high pressure HIP
• Cooling Plate – alternative process
• TBM box First Wall – alternative process

Drilling + Spark erosion + Bending 

EUROfusion WPMAT/MAT-TBM:
characterization of Welding Joint properties

TIG welding robot
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The DEMO Design Criteria for In-Vessel components in EUROfusion
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• The DDC-IC will be a fully integrated guideline adopting inelastic design procedure supported by 

advanced FE based assessment approaches to avoid relying on (over)conservative margins associated 
with elastic design methods.

• Is not meant to be a stand-alone code but to provide links and guidelines to apply existing C&S (ASME, SDC-
IC, RCC-MRx).

• Provide complementary or alternative design rules to cover gaps in existing C&S. 

• Provide design allowables and material properties for fusion-relevant materials and DEMO loading 
conditions (in particular neutron irradiation) in parallel with the development of specific Material Properties 
Handbook.

➢ Introduce an alternative damage classification methodology tailoring the damage limits for each 
specific failure mode to the required functionality of the component in the different plant states.

➢ Provide specific sections for selected components to instruct designers on the methodology to 
follow, i.e. tailored components’ Design Specifications
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Development and validation of inelastic constitutive material models
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Chaboche kinematic hardening

ሶ𝛀𝑖 =
2

3
 𝐶𝑖  ሶ𝜺𝑝  − 𝛾𝑖  𝛀𝑖  ሶ𝑝 

𝛀 = σ𝒊
𝒏 𝛀𝑖 

Voce law isotropic hardening 

 𝑅 = 𝑘 + 𝑅0 𝑝 + 𝑅∞ 1 − 𝑒−𝑏 𝑝  

EVH (viscoplastic) model

 ሶ𝝐𝑝 = σ𝑖=0
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Mod. Time Hardening  (Primary)
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Material : EUROFER97

Hardening laws are combined to 
build material models
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Monotonic load Cyclic load with hold time

Δ𝜖 = 1.0% Hold time = 10 mins 
@ 𝑇𝑡𝑒𝑠𝑡 = 550 °𝐶
J. Aktaa and R. Schmitt, FED (2006)

Loaded till UTS
 @𝑇𝑡𝑒𝑠𝑡 = 𝑅𝑇 − 550 °𝐶
Material Property Handbook – Eurofer97 (2023)
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Next steps:

• Experimental tests for validation on CuCrZr

• Extension to irradiated conditions



Development and validation of design rules for inelastic analysis
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• Exhaustion of ductility
• Determination of the actual failure envelope

by non-standard test at different triaxialities

• Validated on CuCrZr and EUROFER97 at different T

• Multiaxial fatigue
• To reduce conservatism on the fatigue 

design curve (N/20 or /2)

• Validation for EUROFER97 on going

• Creep-fatigue interaction
• To account for cyclic softening, between 

ASME (overconservative) and RCC-MRx (not conservative)

• Validated on EUROFER97, CuCrZr on-going

• Fast fracture
• To define a master curve for W based on Weibull 

model and the Cohesive Zone Elements method

• Validated in un-irradiated conditions, on-going for 
irradiated conditions

• Fatigue crack growth
• Alternative method to calculate the J-integral in elasto-plastic materials
• Validated on CuCrZr, validation for EUROFER97 on-going

conservatism at high triaxiality. This is shown graphically in Error! Reference source not found.. 
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Alternative damage classification scheme (limit state/inelastic analysis)
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Criteria Level Failure modes Damage limit Meaning

Level A/B
Failure mode 1

No damage Component can be operated indefinetlyFailure mode 2
Failure mode 3

Level C
Failure mode 1

Limited Damage Component can be repaired or changed, 
operation can be continuedFailure mode 2

Failure mode 3

Level D
Failure mode 1

Ultimate damage 
Component must be changed, or 
continuation of operation may not be 
possible

Failure mode 2
Failure mode 3

Criteria Level Failure modes Damage limit Meaning

Level A/B

Failure mode 1 No damage
Design is expected to resist the onset of this 
failure mode with a wide margin (over the 
design life).

Failure mode 2 Limited damage
Design is expected to resist the onset of this 
failure mode with a reduced margin (over the 
design life).

Failure mode 3 Ultimate damage
The design is expected to meet (or exceed) 
the conditions for onset of this failure mode 
(over the design life)

Present 
approach 
used in 
nuclear C&S

Alternative 
approach 
proposed 
for DDC-IC

The DDC-IC approach is specific to each component



Introduction of component-level “Design Specification”
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Objective: 
• To have a clear picture of the 

current practice of structural 
analysis of each component’s 
design process to be able to 
draft a “design specification” 
(“state of the art”)

• To ensure coherency 
(“harmonization”) of design 
rules used for analyses

• Not limited to design 
analyses: component 
classification, operating 
conditions, loads, materials 
and manufacturing shall at 
term be included



Extending the domain of applicability to DEMO operating conditions
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• There is a lack of data on the effects of neutron irradiation at high dpa levels (20-50 dpa for EU-DEMO) and high 
neutron energy (14 MeV): change in physical properties (thermal conductivity, electrical resistivity), hardening, shift 
of DBTT, irradiation induced creep and swelling. 

• Applicability of design rules for neutron irradiated materials must be proven.

• Irradiation campaigns to fill these gaps are part of the EUROfusion program:
Courtesy of D. Terentyev, SCK-CEN.

A 14 MeV irradiation facility (DONES) is required to complete the database 
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Standardization Small Specimen Test Techniques (SSTT)
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• OBJECTIVES: propose SSTT for tensile, fatigue, FT and FCG testing, and respective sample geometries → 
Support for IAEA CRP on SSTT for fusion → Prepare the guidelines (for ISO/ASTM review/approval)

Tensile properties

• Pilot Run (PL), according 
to ASTM  guidelines 
completed by EU labs at 
RT, 300°C and 550¨C

• Next step: Interlaboratory 
Study (ILS), open to  
international partners (JA, 
CN).

• Contribution to ASTM 
E8/E8M by end of 2025.

LCF

• Tests on:
o lab-specific sub-sized 

specimens (D = 2 mm & 5 mm)
o standard sized specimens (D = 

8.8 mm)

• Strain controlled LCF tests in air at 
RT & 550°C

• Underestimation of fatigue life 
w.r.t standard specimens → 
correction factor needed.

Fracture toughness

Need to ensure “Code-qualified” data for irradiated material properties 

Combined procedure of experimental tests on small size specimens and FEM simulation to 
reconstruct the J-R curve of “standard-size” specimens.



Conclusions: extending existing C&S to DEMO IVCs
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• ITER has already provided a significant contribution to the development of C&S for IVCs:
• By implementing specific evolutions in industrial C&S (RCC-MRx).
• By developing a set of criteria and related material properties for the specific damage modes of ITER 

IVCs (SDC-IC).

• EUROfusion, in collaboration with F4E, is following a similar approach:
• We are supporting F4E in the development of RCC-MRx for the Test Blanket Modules.
• We are developing DDC-IC to extend the domain of applicability of existing C&S to DEMO relevant materials and 

operating conditions.

• In parallel, we are also investigating innovative approaches:
• Proposing an alternative damage classification scheme, based on inelastic assessment route and limit state 

notion for component’s functionality.
• Developing dedicated “Design Specifications”, for selected, critical IVCs collecting the lessons learned in design, 

building and operating similar components in existing Tokamaks.



Conclusions: towards a collaboration with ITER
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• Identification of SIC and essential safety functions in the different plant 
states.

• Correspondence between ESR and selected C&S (under agreement with 
safety authorities).

• Identification of “mission critical” components and functionalities.

• Ensure consistency in design when different C&S are used for interfacing 
components.

• Feedback from manufacturing and qualification of components (and later 
from operation).



EUROfusion 
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Members
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The DDC-IC structure
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Use of R6 failure assessment curve for setting damage limits
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The overall aim of this approach is to provide a higher level of granularity in the structural integrity assessment 
of DEMO in-vessel components with clear justification for design limits against different failure modes.

Basic rationale

➢ The R6 failure assessment 
procedure indicates that 
the plastic damage 
accumulation has an 
influence on the margin 
against fast fracture.

➢ This can be used for design 
assessment considering 
crack growth and plastic 
strain accumulation (in the 
remaining ligament).

Proposed approach

➢ Predetermining “design 
limits” against brittle 
fracture and plastic damage 
by considering the R6 
failure assessment curve 
boundary.

➢ These limits may be suitably 
modified further 
considering component 
quality class/ limit state 
requirements.

Envisioned advantages

➢ Provides a theoretical 
basis to justify the 
adopted margins against 
brittle and ductile failure 
considering the 
synergistic effects. 

➢ Preferable to assessment 
against each failure 
mode in isolation (which 
may be non-
conservative). 
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