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Foreword

150 (the International Organization for Standardization) is a fed: of national dard

bodies (IS0 member bodies). The work of preparing [nternational Standards is normally carried out through
1SO technical committees. Each member body interested in a subject for which a technical committee
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1SO/IEC Directives, Part 2 (see www.iso.org/directives).
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patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent
rights in respect thereof As of the date of publication of this document, IS0 had not received notice of (a)
patent(s) which may be required to this However, are that
this may not represent the latest information, which may be obtained from the patent database available at
Wwwiso.org/patents, ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not
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This document was prepared by Technical Committee ISO/TC 85, Nuclear energy, nuclear technologies, and
P scz, protection.
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Motivation (1/2) &

ASIPP

e Safety functions of a D-T fusion device

— Confinement of radioactive and explosive materials
— Limitation of ionizing radiation
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Motivation (2/2) &

« Magnets (esp. SC) are essential components in magnetic confinement fusion devices, inc.

tokamak and stellarator
— to confine and shape the fusion plasma core
— to drive the plasma current

» Superconducting magnets systems are located outside the vacuum vessel (15! confinement barrier
in fusion reactor) and inside the cryostat (may serve as 2"d safety or cryogenic confinement barrier)

Central solenoid
Toroidal magnetic

x z i (] e % A
field coils N | V Poloidal magnetic

agnetic lines of  toroidal magnetic
force field directions




Safety requirements &
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Tritium inventory control

— Normal operation
— Incidents & accidents

— Internal & external hazard

ALARA principle

— for radioactive and hazardous inventories for the site, plants, zones, systems and
components

— Shielding adequacy for hands-on operation and personnel access

Radiological zoning — internal&external dose limits and constraints
Materials activation to alleviate the radwaste management

Operation programme and performance



Safety justification
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« Safety provisions for both normal operation and accident scenarios
— To protect workers, the public and the environment
— To prevent accidents
— To mitigate the consequences

— To minimise radioactive waste hazards

« Safety justification needed to demonstrate the design of components and

integration will deliver a safe operation
— Defense in depth to be implemented for fusion facility
— To determine the limits and to apply ALARA principle
* To guide the design, inc. safety implementation

— How to justify the design =» Functional qualification

— How to meet safety requirements =» Safety qualification



Gaps to be filled &
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« Specific requirements raised by applying the superconducting magnets in
nuclear fusion facilities
— Penetrations through vacuum vessel, cryostat and building walls
— Shielding capability
— E-M load on the vacuum vessel

— Magnetic field environment for electronics that are necessary for nuclear instruments and

measurement, e.g. to monitor N/P production and fusion power
— Magnetic measurement to be placed inside the vacuum vessel

— Hazard associated with superconducting magnets, e.g. loss of superconductivity (quench),

Parschen breakdown following helium and voltage leakage



Development consideration &
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« Confinement related
— To mitigate the risk and consequence of hazard associated with
superconducting magnet systems, e.g.

> Accidental discharge of the magnetic energy — impact on 15t confinement barrier;
» Accidental outbreak of the cryogenic helium — impact on cryostat and penetrations
through building walls

 Radiation protection related

— To reduce/minimise the radiological dose exposure
» To enhance the performance and reliability of superconducting magnet in a nuclear
environment

» To facilitate the maintenance and repairability of large scale superconducting magnet



Limitation and difficulties &
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The immaturity of the fusion safety system and framework
The overlap of the radiation safety between fusion and fission applications
The narrowness of the specific technology application in fusion

The prevention of the content repetition from other existing and under-

development standards
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C&S need question/discussion

through examples of nuclear analyses
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Neutronics modelling & verification
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Shielding analysis &

ASIPP

» Shielding Requirements for Irradiation-Sensitive Components
O VV design limit
» Ensure the reduction in fracture toughness not exceed 30%: DPA < 2.75
* Ensure rewelding performance: He production < 1 appm
O TFC design limit, ensure superconductivity, consider cooling capacity:
* NHD: steel case < 2E-3 W/cm?3, conductor < 1E-3 W/cm?3

« Fast neutron fluence: insulator < 1E18 n/cm?, conductor < 1E19 n/cm?

* Neutron Leakage « Shielding Design

11111

Neutron Flux(n/cmA2/s)

(b) TFC & PFC (a) Gap between BLK & DIV (b) Gap between BLK modules 12




Neutronics analysis for ECRH &
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v' The peak damage of VV is at the junction between VV and port.

1.7e+413

o 56%' EE o *i o v' The VV damage of EC2 are approximately 1-2 orders of magnitude lower
E § 5e than those of EC1.

% &i v In EC2, the maximum VV damage is 9.9 X 102 He-appm/FPY and

i :1 1.75% 102 DPA/FPY, which meets the limits after 10 FPY of operation.

v’ After shielding optimization, all TFC parameters are reduced by
(a) EC1 (b) EC2 ) ) L
approximately 2 orders of magnitude and are below the limits
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Neutronics analysis for ICRF &

* Nuclear analysis
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v" Maximum DPA, gas production and NHD are 12 DPA/FPY, 121 He
appm/FPY, 740 H appm/FPY and 29.8 W/cm?3

v" NHD attenuation of the inner and outer waveguides with the same number

is basically consistent, with maximum values of 0.783 and 0.525 W/cm3

v Maximum damage of TFC and VV is located at the area around the antenna

v" The current shielding design can meet the shielding requirements
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Neutronics analysis for NBI &
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* Models * Nuclear analysis s T )
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VV and TFC can meet the design limits.
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Dose Rate during operation %
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Dose rate after shutdown &
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Activation evaluation for CFETR
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Calculated information

Volume/mass
Activation responses

Radwaste classification indexes

(CI/VLLW/LLWI/ILW)

Cooling time requirement for
different level

nents (m3)

BLK 1.15E3  5.03E3
DIV 2.25E2  1.37E3
\A% 6.33E2  3.96E3
CS 2.25E2  1.42E3
PF 5.14e2  3.37E3

TF 1.45E3  1.01E4
Cryostat 6.89E2  5.54E3
Port 488E3  1.32E4

[

(-]
=
-

[
=]
—
~

1010 4

108«

106 4

101

Specific activity (Bq/kg)

102 4

104 1=

Contact dose rate (Sv/h)

—~ 1 Specific activity =
—#— Cryostat

—4— Port ‘

10~ 10 10* 107! 10! 10°

Time after shutdown (years)

102_

109

10-2

| —#— Cryostat

—e— BLK
DIV
vV

+— CS

! Contact dose raté“‘

—+— TF

—4— Port

107 10 103 10-! 10! 10°
Time after shutdown (years)

Decay heat density (kW/m3)

LLW index (CHN2018)

102 B

10° 4

10—2 4

107" 4

10-6 4

10-%

10-10

Decay heat density

—&— Tokamak
BLK
DIV
—h— W
cS
| —— PF
- TF
| =4~ CRYOSTAT
—— Port

105 10 107 10! 103
Time after shutdown (years)

10-7

3 LLW index [

r —8— Tokamak
BLK
L DIV
A

| Ccs

—+— PF

—#— TF
| —#— CRYOSTAT
—+— Port

107 105 10 10! 10! 10°
Time after shutdown (years)

18



Radwaste assessment @
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Required Cooling Time:
egr; OOLIE LIme Temporary storage > 100
years years is not allowed
Bl 1-10 years [ ]100-1000 years
~ [_]10-100 years - [l ~1000 years
|
\
B \ = /AN e
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Required cooling time to LLW To clearance level To recyclable level 19

Zhang, X. et al. Activation analysis and radwaste assessment of CFETR. Fusion Engineering and Design 176, 113036 (2022).



cosVMPT: CAD to neutronics model conversion %

Preprocess and group
Convert the main Convert the outer house
machine
Establish the box as the
outer boundary

building
[ Establish simple boxes for components ]

Convert the house
building together with the

boundary box

containing detailed structures or the region
used to be filled with other components

T~

\

Convert the Convert the detailed
main machine structure or Replace the defined box with
with boxes components for filling the main machine cells

I

Use Fill & U cards to fill boxes

or Generate the
Use the self-defined void to replace boxes input file

i
R i i - & " 1 i E r h
7 . e = T [,
(a) delete the detail (c) homogenize materials e —=3 W ‘
. kj . — ’, I}
= [ $ \ : : HH
H o : -
Spline surface | = : i
e ]
|4 = Torus !
1= ! . 3
(b) replace the spline surface (d) cut model Neutronics model of CFETR in 360-degree
1. Wu, Q. et al. Neutronics Modeling and Nuclear Analysis Based on the Full CAD Geometry of CFETR. Fusion Science and Technology 79, 274-283 (2023).
2. Lu, P. et al. Progress on neutronic analysis for CFETR. Nucl. Fusion 62, 056011 (2022). 20

3. Du, H. et al. Development of an assistant program for CAD-to-cosRMC modelling. Fusion Engineering and Design 157, 111662 (2020).
4. Du, H. et al. Development of cosVMPT and Application of Creating 3D Neutronics Model for 360-Degree CFETR. J Fusion Energ 40, 2 (2021).



OTF GVR: global variance reduction for MC &
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On-the-fly (OTF) global variance reduction (GVR)

8.7e+13

+  on-the-fly automatical update of weight window (WW) E:.'e‘“ s

* unbaised, high-effiencient outflow control with dynamic E:: E

upper bounds of WW to mitigate over-splitting Eleno é

«  supports n\np\p modes and multi-group %'e“’ g

» prooved to be effiencient for complex model of E:j ®
260406

fission/fusion/accerlerator

Application to the CFETR 360-degree model

lAn

Y

83 m
(O )

i

,'ajﬁ '.‘.-;/: : '? .-‘I .
i u

nnnnnn

IFMIF-DONES test cell (TC) benchmark




NATF: activation & radwaste analysis
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Estimate of in-vessel retention @
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e Preliminary estimate of T retention and permeation

Incident heat lux Wiy

- In-vessel components (first wall, blanket and divertor) to be designed 'w l
~ T injection flux assumed: 1E22~5E23 /m?/s i o
— Operation duration: 1600s*50 (pulse) & 20000s (steady-state) e .ZfﬂZ:Zi

0.000

- Temperature referred to ITER and/or CFETR to estimate its impact
e Variables and uncertainties

— Plasma particle flux and energy
— Temperature distribution in PFCs
— Fraction of T variable in the exhaust

002

— Processing scenario

Case Heat flow(MW-m2) Particle flow (m?s!) T, (K)

1 10 5X10% 552
2 5 3.5X10% 436 K oo
3 1 1X10% 347

1300
1200
1100
| 11000

Y

| | 900

CFETR DIV Temp. distribution (Y. Wu, 2023)

_Temperature (K) | OT1 OT2 | OT3  Dome | IT1 | IT2  IT3

400

700

106 | |
w 833 [1182| 1070 | 1065 833 | 1182
w [l o B cvorze [l water 900 200 ! 1 5 ! ! |
. 500 | Cu | 749 | 641 | 802 | 718 | 749 | 641 | 802
Divertor monoblock 400 0 CuCrZr 691 579 | 746 | 634 | 691 | 579 746

Casel Case2 Case3



Summary &
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For fusion facilities with “limited” (lower) risks, it is practical to adopt existing
code and standard for the design and fabrication, however, attentions to be paid
to ensure the consistency of main systems for the entire facility

C&S development more essential for DEMO and FPP to meet the need of high
availability, reliability and stability, especially large uncertainties related to

iInnovative technologies, the 14MeV neutron induced radiation damage and the
long-term performance in an environment with the combination of multiple loads

Data and experiences to be obtained, in parallel, from the operation of those
fusion facilities and dedicated test facilities to establish database for C&S

Nuclear and radiation safety may be subject to national regulations, e.g. T
inventory control and management = high level C&S and specific application
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Thanks for your attention!

Email: slzheng@ipp.ac.cn
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