

Collaboration in Fusion Codes & Standards: Practices from SWIP and a Call for Global Partnership

Guoliang XIAO, Wulyu ZHONG, Lijun CAI, Xiaoyu WANG, Xinyi LI

19. Nov 2025

email: xiaogl@swip.ac.cn

Southwestern Institute of Physics (SWIP), China Fusion Energy Company

Contents

Introduction

- SWIP's Practices and Case Study
- > The Landscape and proposals
- Conclusions

Brief introduction of SWIP/CFEC

CFEC: Reactors engineering, system integration.

SWIP: Source of original technologies

Shanghai & Chengdu: Accelerating Development.

Shuangliu, Chengdu

(HL-3)

Tianfu, Chengdu

Minhang, Shanghai

Brief introduction of SWIP

Southwestern Institute of Physics (SWIP) —— since 1965

Earliest institute for fusion energy research in China

Plasma Application Center

Spin-off technologies application

Engineering & Technical
College
Education and
technology industrialization

Center for fusion tech.

Tianfu District

Center for Fusion Science (CFS) Shuangliu District

Center for fusion technologies

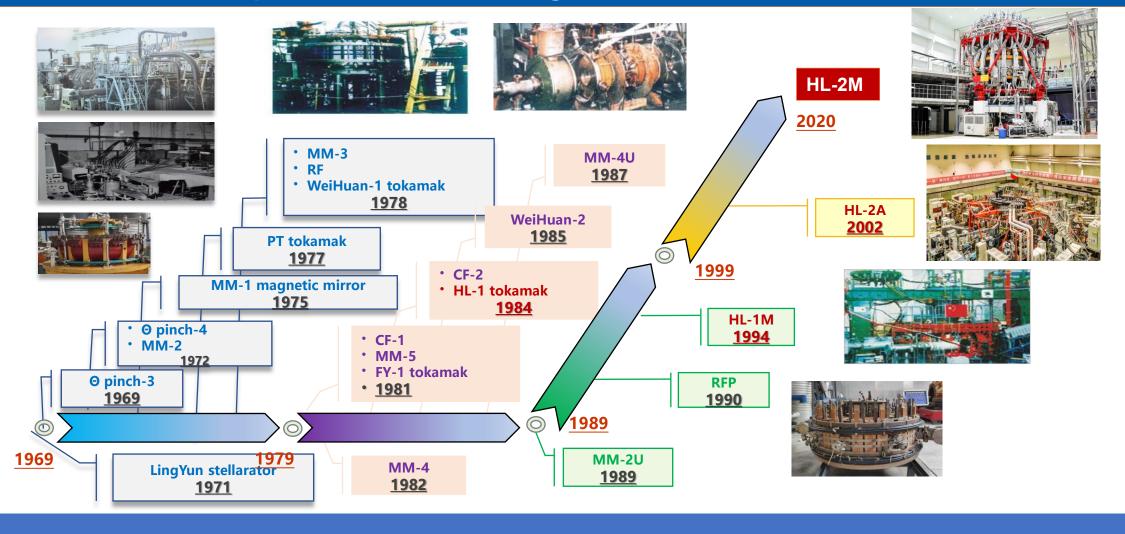


Fusion Technology R&D Center

~ 30 km from CFS (HL-3 tokamak)

Comprehensive nuclear fusion research base in coming years, includes **Five parts**:

- Integrated design of fusion reactor
- > R&D of machine components of fusion reactor
- R&D of auxiliary systems of fusion reactor
- Fusion plasma research
- Fusion technology innovation zone



Fusion devices developed by SWIP

> 20 fusion devices of various magnetic configurations since 1969 θ-pinch, stellarator, magnetic mirror, tokamaks, etc.

Tokamaks developed by SWIP

Parameters

Size

HL-1 (1984)

Radius 1.02 / 0.20 m

First mega-science project of magnetic fusion in China

HL-1M (1994)

Radius 1.02 / 0.24 m

Plasma current >300 kA
Plasma fueling by SMBI
proposed for the first
time

HL-2A (2002)

Plasma current 0.45 MA Radius 1.65 / 0.4 m

First diverted tokamak in China.
Important milestones achieved in fusion field

HL-3 (2020)

Plasma current 2.5 (3) MA

Radius 1.78 / 0.65 m

Largest tokamak in China with highest parameter and advanced divertor

Perspectives from SWIP

■ Internationally harmonized Codes and Standards are indispensable for achieving safe, reliable, and commercially viable fusion energy.

Ensuring Safety & Licensing

Establish the technical basis for safety demonstration, regulatory approval, and public confidence.

Enabling a Global Supply Chain

Facilitate technical interoperability, quality assurance, and mutual acceptance of components across borders.

Guaranteeing Reliability & Investment

Define requirements for component and system reliability, de-risking technology development and attracting investment.

Accelerating Commercialization

Provide a predictable and consistent framework to reduce project risks and streamline the path to deployment.

■ To enable the timely and widespread commercial deployment of fusion energy.

A Key Driver in China's Fusion Energy Program

■ SWIP is positioned at the heart of a comprehensive national network, uniquely integrating R&D, commercialization, and industrial supply chains for effective standards development.

Governmental engagement

Backed by our state-owned parent company, China National Nuclear Corporation (CNNC), which possesses a proven track record in nuclear code development and strong governmental engagement.

Leading in R&D

As the core research institute, we provide the foundational science and engineering expertise, operating major facilities like HL-2/3 and design of DEMO

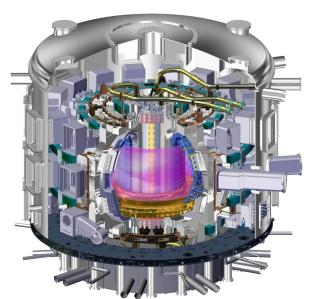
Driving Commercialization

Works in synergy with CFEC, the entity dedicated to advancing fusion energy commercialization, ensuring our R&D and standards work are market-relevant.

Leveraging a Broader Network

Collaborates with a network of subordinate industrial companies and academic partners, connecting fundamental research with manufacturing and education.

Contents


Introduction

- SWIP's Practices and Case Study
- > The Landscape and proposals
- Conclusions

SWIP's Proactive Role in Standardization

- SWIP is a leading contributor, actively shaping the national fusion standard system and translating cutting-edge project experience into concrete standards.
- > Substantial Contribution to Standard Development
 - √ 53 specialized fusion standards by end of 2024
 - ✓ Leading author for 40 standards; co-author for 13
- > Standards Forged in Real Projects
 - ✓ Incubated from major programs:
 - ITER Procurement Packages (Magnet Supports, First Wall, TBM)
 - HL-3 engineering R&D
 - ✓ Covering key areas: engineering manufacturing, testing, diagnostics, nuclear safety
- Enabling Industrial Application & Certification
 - ✓ Direct application in product engineering certification (e.g., neutron multiplier beryllium pebbles)
 - ✓ Supporting material procurement for ITER

Domestic Foundation: Building a Coherent Standard Systems

Building a comprehensive national framework to create foundational processes and expertise for global collaboration.

Systematic Framework Development

Organizing standards into key technological domains
Creating a structured and coherent national system

Institutional Expertise Cultivation

Skilled team developed through high-volume standard development Proven proficiency in the entire standards lifecycle

Practical Process Insights

Deep understanding of technical consensus-building challenges Experience in defining robust, universally applicable requirements

Breakthrough: 1st Published ISO Fusion Standard

SWIP successfully led the development and publication of the first-ever ISO standard dedicated to fusion, demonstrating the viability of international collaboration.

A Pioneering Milestone for Fusion: ISO 4233:2023: "Reactor technology — Nuclear fusion reactor — Hot helium leak testing method for high temperature pressure-bearing components in nuclear fusion reactors"

Downloaded: 2023-02-26T11:31:44.881244

STANDARD

CTANDARD

ISO 4233

First edition 2023-03

Reactor technology — Nuclear fusion reactors — Hot helium leak testing method for high temperature pressure-bearing components in nuclear fusion reactors

Technologie du réacteur — Réacteurs à fusion nucléaire — Méthode de contrôle d'étanchéité par détection de fuite d'hélium à chaud pour les composants sous pression à haute température de réacteurs à fusion nucléaire

Ongoing Efforts: New Standard Drafts in the ISO Pipeline

■ Building on the first success, we are actively promoting new international standards, navigating the complexities of the process.

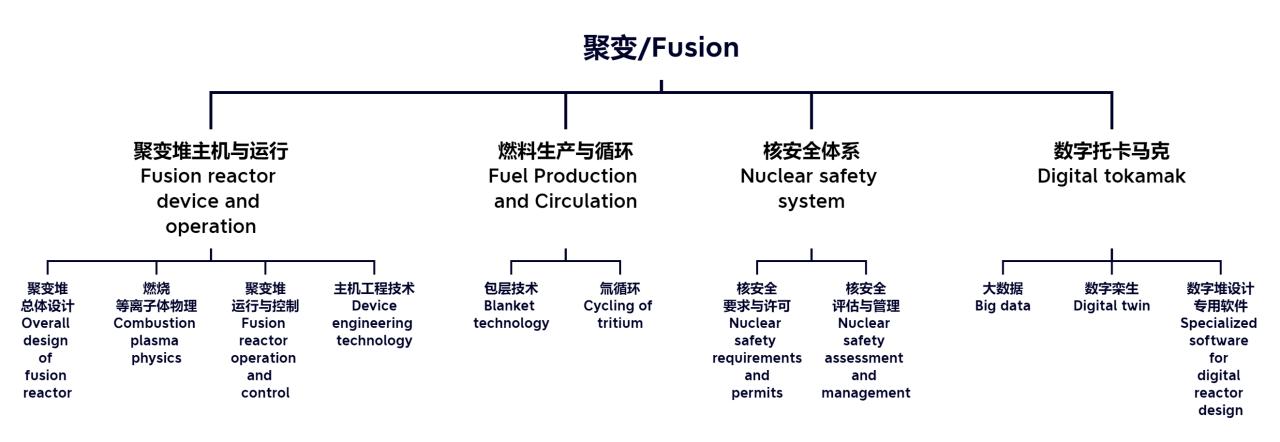
Reference	Title	Current stage	Committee	Action
ISO/PWI 19327 ed.1- id.85788	Reactor technology — Fusion reactors — design and assessment of remote maintenance system for divertor of magnetic confinement fusion reactor	00.60 Since 2023-01-17	ISO/TC 85/SC 6/WG 2	
ISO/PWI 19326 ed.1- id.85787	Reactor technology — Fusion reactors — Design and assessment for remotely-handled components of magnetic confinement fusion reactor	00.60 Since 2023-01-17	ISO/TC 85/SC 6/WG 2	
ISO/PWI 19243 ed.1- id.85740	Structural design criteria for in-vessel components of magnetic confinement fusion reactor via elastic analysis method	00.60 Since 2023-01-17	ISO/TC 85/SC 6/WG 2	
ISO/AWI 23010 ed.1- id.87348	Reactor Technology — Technical specifications for Fission Research Reactor — Waste and Decommissioning	20.00 Since 2024-07-30	ISO/TC 85/SC 6/WG 2	
ISO/AWI 22996 ed.1- id.87347	Reactor Technology — Fission Research Reactor — Design and Operation	20.00 Since 2024-07-30	ISO/TC 85/SC 6/WG 2	
ISO/CD 19696 ed.1- id.85970	Fusion technology — Magnetic confinement fusion — Test methods for low temperature mechanical properties of electrical insulation materials of superconducting devices	30.60 Since 2025-10-25	ISO/TC 85/SC 6/WG 2	
ISO/PWI 26208 ed.1- id.92830	Fusion technology — Magnetic confinement fusion — Requirement for performance tests of superconducting magnet	00.00 Since 2025-09-22	ISO/TC 85/SC 6/WG 2	
ISO/DIS 19991 ed.1- id.86045	Fusion technology — Experimental magnetic confinement fusion facilities — Supersonic molecular beam injection fueling technique for fusion devices	40.20 Since 2025-09-30	ISO/TC 85/SC 6/WG 2	
ISO 4233-2023 ed.1- id.79826	Reactor technology — Nuclear fusion reactors — Hot helium leak testing method for high temperature pressure-bearing components in nuclear fusion reactors	60.60 Since 2023-03-06 Next SR: 2028-01-15	ISO/TC 85/SC 6/WG 2	

SC6: Reactor Technology (7/9 fusion)

Fueling
Magnets
Tritium breeding
Remote handling

■ SWIP is pioneering bilateral standard alignment

- ➤ Active in RCC-MRx China User Group: Facilitated by ITER China, engaging directly with French AFCEN association for code alignment.
- ➤ Concrete Achievement: Standard Integration: 3 Chinese fusion standards incorporated into the RCC-MRx 2022 edition as referenced RPP norms.
- Driving Global Technical Dialogue: Active participation in AFCEN international congresses and user group meetings; Sharing application results and promoting technical exchange.



Key technologies area

■ Following a phased roadmap, we are advancing standards in key technologies to drive fusion innovation and accelerate the development of a comprehensive fusion standards system

Key Challenges in International Joint Development 🕸

Our collaborative projects reveal common, surmountable challenges that require structured approaches to overcome.

01

Reconciling Diverse Technical Viewpoints

Diverging opinions rooted in national research priorities and technology pathways (e.g., blanket concepts, material choices). 02

Managing Multistakeholder Consensus

Balancing varying requirements from research institutions, industry vendors, and future regulators.

03

Navigating Process & Communication Efficiency

Complex ISO procedures with lengthy review cycles.
Significant overhead in cross-time-zone and cross-language communication.

Lessons Learned & The Imperative for a Global Platform

Our experience confirms that a long-term, stable, and inclusive platform is the critical enabler to systematically address collaboration challenges and accelerate C&S development.

Validated Success Factors:

Early
Engagement &
Trust Building

The Identified Gap & Solution:

- ✓ Ad-hoc groups lack the stability for long-term planning.
- ✓ A dedicated global platform is needed to institutionalize these success factors.

How a Platform Accelerates C&S:

- ✓ Provides a standing forum for continuous dialogue, pre-normative research, and early consensus.
- ✓ Builds persistent communities of practice around key technical areas.
- ✓ Reduces transaction costs by establishing common workflows and trusted networks.

Contents

> Introduction

- SWIP's Practices and Case Study
- > The Landscape and proposals
- > Conclusions

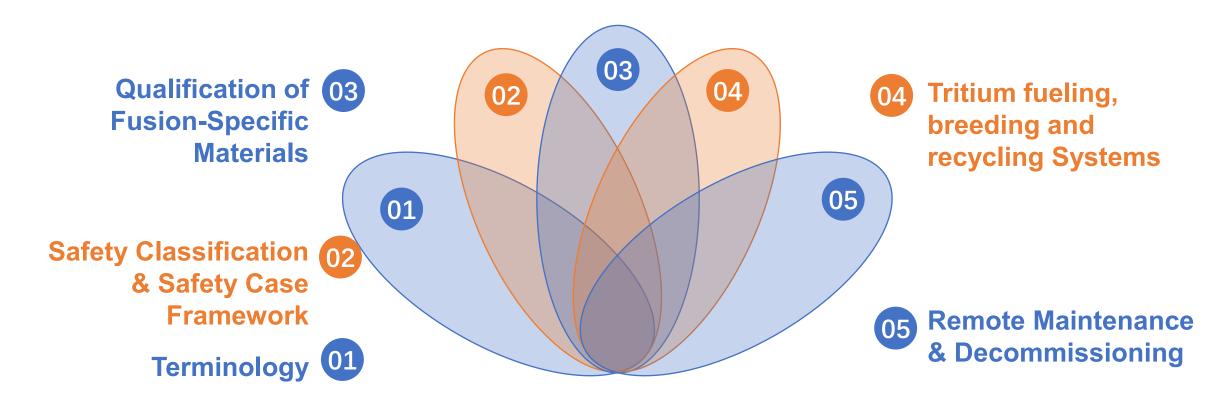
Global Landscape: Current Efforts & The Critical Gap

Efforts scattered across different bodies (e.g., ISO, ASME, IAEA, ITER).

ASME Section
III Division 4
Fusion Energy
Devices Code

Tech. doc on fusion safety and regulation; safety report

ITER-fusion standards; decades of experience and expertise


- > Fusion standardization housed under a fission-oriented committee (ISO/TC85/SC6)
- Identified Systemic Limitations:
 - ✓ Temporary & Ad-hoc Working Groups: Lack long-term stability and a strategic roadmap.
 - ✓ Suboptimal Structure: Fusion-specific needs are not prioritized within fission-dominated frameworks.
 - ✓ Lack of a Central Coordinating Platform: Leads to duplication and gaps.
 - ✓ **Limited & Inaccessible Expert Roster:** Working groups rely on ad-hoc nominations, leaving many fusion experts from national programs without a clear path to contribute.

Key Gaps & Priority Action Areas

We must collectively identify and prioritize standards in domains critical to licensing, investment, and global supply chains.

Proposed High-Priority Domains for Collaboration:

The Need for a Global Collaborative Framework

- We propose initiating a discussion on establishing a more robust and inclusive global framework, potentially under IAEA auspices, to urgently address fusion C&S needs.
 - ➤ The Identified Need: Current efforts are valuable but insufficient for the scale of the commercialization challenge.
 - A Proposed Path Forward: Explore the creation of a dedicated, standing global collaborative framework for fusion C&S.
 - Core Objectives of Such a Framework: Provide long-term stability and strategic direction.
 - Ensure broader inclusion of global fusion expertise.
 - Coordinate efforts to systematically close priority gaps.

■ Based on our experience, we suggest the international community consider several key features for an effective partnership.

Suggested Guiding Principles:

- ✓ Strategic Oversight: A governance body with high-level representation to set priorities.
- ✓ Technical Execution: Thematic working groups open to global experts, focused on key domains (e.g., Safety, Materials).
- ✓ Knowledge Sharing: A centralized platform for sharing drafts, research, and best practices.

Contents

> Introduction

- SWIP's Practices and Case Study
- > The Landscape and proposals
- > Conclusions

Summary

- Building a common framework for fusion energy is a shared challenge that demands a collective response.
- Shared Learning: Our experience at SWIP underscores both the necessity and the complexities of international C&S development.
- ➤ Collective Imperative: The current fragmented landscape calls for a more structured and inclusive approach to collaboration.
- Unified Goal: Accelerating fusion commercialization through robust, globally accepted standards.
- A Call for Collective Action: Let us advance this discussion within the international community to pave the way for a coordinated global effort.