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Project Goals and Objectives

Goals:
 To develop a reproducible method to produce realistic evaluations for nuclei
off-stability

« Apply the method to produce new evaluations of fission products off stability

Key Objectives:

« To provide evaluated files for the main off-stability fission products of 235U
and submit them to the ENDF/B nuclear data library

« Develop a robust and reproducible method for such evaluations

« Stretch goal: develop evaluated files for all off-stability fission products
from 2351, 239py, 252Cf
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Project Goals and Objectives

The core-goal nuclei (mostly produced by 2*U fission):

o 15 Fission yield bump: 87-%%Br, 8892Kr, 91-9%4Rb, 9297St, 9599, 97-1027; 101-103\

o 20 Fission yield bump: 13-133Sh, 132136 e, 135-138] 136141 139-143Cg 1411465, 144-145 5 147-148Ce
Secondary goal (main fission products from **Pu and 2>°Cf):

o 15 Fission yield bump: 94100y, 961037y, 99.100.104.105\p_102-108)[q 105-110 ¢ 107-112Ry 110-114Rp 112-116pd 11440
o 15t Fission vield bump: 13! Te, 134], 135Xe, 137138, 144Cg 140B, 143,146-148] 5 145.146,149,150C¢ 149-152py 151-153N(
Stretch goal (whole isotopic chain of fission products from 233U, 23°Pu, and 2>>Cf):

° 66V’ 66-67Cr, 66-71Mn’ 66_75F€, 66-77C0, 66-80Ni, 66_82(:11, 66-85211’ 68-87Ga, 70-90Ge, 72_92AS, 75'9586, 77'98BI’, 79'101KI', 81,83-103Rb, 83-
10681', 87—109Y’ 88'11221', 91—114N‘b’ 93—117M0, 97_119TC, 98—121,124Ru, 101—125Rh’ 103—126,128Pd, 106—132Ag, 108—134Cd’ 111_137111, 113—139Sn,
118-14OSb, 120'143TC, 123,125,126,128-1451, 125’128’130'148XC, 131'151CS, 132-153Ba, 135,137-155La, 137-157CC, 139'1591)1', 142-161Nd’ 144-163Pm, 147-

165811’1, 149,151—168Eu’ 152—170Gd, 155—172Tb’ 157—172Dy, 161_172H0, 162_172EI', 165—172Tm, 168—172Yb, 171—172Lu

Project will be successful if core-goal is achieved. However, when
the methods are well-stablished, generalization to secondary and
L? Brookhaven stretch goals should be possible with relative low effort.
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Project impact on the program

« Applications such nonproliferation, post-detonation forensics,
spent-fuel assay, reactor burnup and design, as well as
astrophysics, rely on the accurate description of the neutron
interaction with unstable fission products.

« Current cross-section descriptions of these nuclei are either non-
existent or based on simplified assumptions, leading to unquantified
Impacts on predicted cross-sections.

« By project completion, more predictive/realistic new nuclear data will
be produced, improving the reliability of applications involving fission
products off stability!
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Team Introduction

Team Member

Past/Current Leveraging Activities

Project Role

- @

Gustavo Nobre (BNL, PI)

Led many previous evaluations, on and off stability

Reaction model developer with many published works related to
deformed nuclei, predictive models, and machine learning.
ENDF/B library manager and EMPIRE co-developer

Project Coordination

Lead fast region calculations, mentoring postdoc
Complete evaluated file assembly and submit to ENDF/B
library

David Brown (BNL)

Extensive work and experience on resolved and unresolved
resonances and analytical methods related cross-section
probabilities and synthetic resonance generation.

ENDF evaluator and NNDC and CSEWG chair

Lead resonance treatment
Implement transitions between different energy regions

-

Kyle Wendt (LLNL)

Theoretical nuclear physicist with extensive experience in
modeling low energy phenomena.

Lead develop on nuclear data UQ suite at LLNL

Theory/Al team co-lead on SI-LDRD on ML for nuclear data

Lead ML effort to provide cross-section priors off-stability for
threshold reactions

Alexander Voinov (OU)

Experimentalist with extensive experience in nuclear level
density measurements

Perform experiments and data analysis for stable nucleiin
the mass region of fission products

Aman Sharma (LLNL, postdoc)

Postdoc working on LLNL SI-LDRD on ML for nuclear data
Experience on both experimental and theoretic physics, with an
emphasis on UQ in both context.

Has conducted experiments and evaluations as PhD student.

Will work with Gustavo Nobre to learn about EMPIRE and to
perform most of fast-region calculations.

Shusen Liu (LLNL)

Machine intelligence scientist with extensive experience on
signal modeling and interpretable machine learning.
Theory/Al team co-lead on SI-LDRD on ML for nuclear data.

Will adapt the LLNL ML to specific needs of this project.

Emanuel Chimanski (BNL)

Evaluator and model developer, with published works on
microscopic models and preequilibrium
EMPIRE co-developer

Fast-region preequilibrium modeling

Donny Hornback: BNL NA-22 POC




Nuclear Data is the interface between nuclear physics and
science and technical application that depend nuclear physics

S-process

Thermonuclear
Fusion

Proton number (2)




The Nuclear Data Pipeline

Our goal is to get the highest quality data to users

security science isotopes energy

¢ Brookhaven
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cross section (barns)

Evaluated Nuclear Data File: Nuclear reactions

A reaction evaluation is the
description of everything
that can happen from the

nuclear reaction between a
projectile and a target

Typical neutron incident on non-actinide has ~ 18
relevant reactions
« ~ 5threshold reactions: (n,2n), (n,3n), (n,p), etc.

» ~ 10 discrete level excitation reactions: (n,n’) for each level
in residual nucleus

« 3 non-threshold reactions: (n,tot), (n,el), (n,y)
Actinides add fission, (n,f)
For transport studies, need:

* Cross sections
« Multiplicities of all emitted particles (@)
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Which nuclei are we focusing on in this project?

o 1st Bump: 87-89B 88-92Kf 91-94Rb 92-97Sr
9599y 971027, 101-103Nb

[ | PEE
- o e
e 2nd Bump: 131'133Sb, 132'136Te, 135-138|, 136- : mE

141Xe, 139'143CS, 141'14688, 144-145La, 147-
148Ce

uuuuuuuuuuuuuuuuu
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Which nuclei are we focusing on in thls prOJect’?
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...........

Which nuclei are we focusing on In this project?

. .’n'l
e -m-E-H-W0E B BB H-H-H-E

o 1st Bump: 87-89B 88-92Kf 91-94Rb 92-97Sr
9599y 971027, 101-103Nb

e 2nd Bump: 131-1338b 132-136Te 135-138] 136-
141K @ 139-143Cg 141-146B g 144-145| g 147-

148Ce

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Off-stability = few data constraints e e e e A AR
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Many are (highly-)deformed!

Ea+ / B2+

(Indication of deformation)
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Approach in fast region




Employing a more predictive approach for deformed
nuclei: Adiabatic model

Motivation:

Predictive theory helps reaction research, evaluations
and applications

Adiabatic a Pproa ch: « Extrapolation to regions where data is scarce
. . . + Mitigate compensation of errors
A ve 'y non-rigorous descr|pt|0n « Lack of existing regional optical potentials for statically

deformed nuclei
Many fission products are deformed nuclei
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»wwwwwwewwwwsy Earlier works had shown that
scattering from highly deformed
nuclei is near adiabatic limit,
thus deforming a spherical

Spher. OMP CC rot. band glolbal poten’FiaI may t_>e su_itable
Gs Brookhaven with only minor modifications.
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Convergence on number of channels
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Fast region: We will leverage previous

experience with deformed nuclei

 Predictive: takes as input

_ _UF : 74-W-184(n,g) 3
* An spherical OMP ; ]
» Deformation paramters v
 Deformation treatment changes : A
total/elastic cross sections by orders R,
of magnitude o
« Indirectly impacts capture T cdent energy v
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PHYSICAL REVIEW C 91, 024618 (2015)

Derivation of an optical potential for statically deformed rare-earth nuclei
from a global spherical potential

G. P. A. Nobre,” A. Palumbo, M. Herman, D. Brown, and S. Hoblit
National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

E. 8. Dietrich
P.O. Box 30423, Walnut Creek, California 94598, USA
(Received 23 December 2014; published 25 February 2015)
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FIG. 1. (Color online) Total cross sections for neutrons scattered
by a "% Ho and '*>'3%136W targets for incident energies ranging from
as low as ~3 keV to as high as 200 MeV, which is the upper limit
of validity for the KD optical potential [2]. The solid black curves
correspond to the predictions of our CC model, while the dashed
red curves are the results of calculations within the spherical model.
The experimental data were taken from the EXFOR nuclear data
library [39]. 19



Good agreement with data!
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Extending to unstable nuclel

Previous exploration into

» This approach was applied to evaluations of unstable nuclei: 74+ w extending approach_ j[o Lo
evaluations accepted into ENDF/B-VIII.0° earths off stability

+ Activation studies require reliable cross section knowledge for ROORAN
unstable nuclei and long-lived isomers, as well as all the nuclides in Microscopic nuclear densities for deformed nucei
the decay chain towards stability Compisas v ENPRI o TS o =

* Machine Learning techniques can be used to train the system to
choose the best set of models and parametrization in each case

Different models can predict cross sections
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Under LDRD at LLNL, we are using existing calculations and
measurements to learn how cross sections transform across
the nuclear chart
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Under LDRD at LLNL, we are using existing calculations and
measurements to learn how cross sections transform across
the nuclear chart
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We will leverage the tools from this LDRD to provide
“systematic” priors for evaluations on unstable nuclei.
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We have developed a framework for learning and predicting
cross sections across the chart.

Graph based Cross-section predlctloﬂ

|
model

Latent representation of cross-section

-

4

fl’ ransformer Cross-sectlon predicticm

Transformer
model

Data Cross-section
Augmentation representation learning /

Representation learning

GPT-like

A

@ BiERIEEE : Predicting the cross-section
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Graph framework can precisely infer
missing data

INR encoding
T T T T | T T T T

| T T T T |-
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Approach in resonance
region




Capture cross-sections at low energies

110Cd
10° ] Capture cross-sections have

« A1/ part —the shape is analytic, the magnitude must
107 - be measured

« Acompound nuclear part consisting of many
resonances

Ty

1004 full g {E)
1/v part
—— compound part

10—2 4

o,(E) (b)

«  Asmooth high-energy part that peaks around 14 MeV

with 6~100 mb /—\A onert
. e e s \c,O
Practical division: we““a/\‘ 4 ucevs

S
- =~~~

10~%

———

T T T T T
104 102 107 104 104 108
E (V) S e - g S 7’

 There are too many resonances.

« |tis not possible to predict their position or width

 We focus on an “average” cross section and some probability
distribution that captures the size of fluctuations 2%




Capture cross-sectio

Build reduced
order model of

11111

1

1
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1037 |
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104y !

Leveraging
preliminary work
under NA-22
Intentional Forensics
Venture

Test against

original cross-

sections or MACS
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—— At
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(Z,A) dependence of
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l MACS vs kT for Rul05
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Capture cross-section o o o
fluctuations — A

Regression

U233 capture 300.0K

[— [01(E),....om(E)]

P [cle] N —— [E:
N I R-matrix
Loop over N opti+0nal
v —| temp. b> P(0)=M-1 Zw8(c-0om(E)) ]
s | TN  ciiocts Use age-progression software to learn the
temperature (and energy?) dependence of the
2 cross-section PDF
P(0) «—| “Smoothing”
0
oy
4 E} Joint PDF P(Ctot, Oy)

Use FUDGE as a generative model to
simulate cross-section probability
distribution function (PDF)

1 —

Qo

: 55 secto® ! ;;'
30 -1 \09 o 1077 =
: 107!
238(n,g) cross-section PDF - 10-2
: 10-3
5 10 15 20 25
ot (D)

Alternatively, we can use the PDFs directly
with estimates of RRR spacings & widths

Leveraging preliminary
work under NCSP AM-6
30




Experimental costraints:
Nuclear Level Densities




Experimental level density constraints at
Edwards lab, Ohio University

in the mass region of fission products thereby enhancing the
predictive power of level density models for nuclear data
evaluations when extrapolating to nuclei off stability.

Goal: to improve systematics of the level density model parameters I

Method:

 toreview and validate available literature data on level
densities measured with the different techniques over
the mass range of the fission products (about 20 data
sets are available).

* to address gapsin level density systematics by
conducting targeted experiments at the Edwards Lab
and benchmark models against experimental data

Time of flight
«— 30 m tunnel

L? Brookhaven Shielding wall
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Particle evaporation technique to study level
densities at the Edwards Lab

1. Create a reaction which proceeds through the compound reaction mechanism. This implies selecting
appropriate beam species and energies.

2. Differential spectra of particles emitted from compound reactions depends on level density of nuclei
populated.

* Preequilibrium emissions become dominant at high
doidE energies

« We will use experimental information to constrain
microscopic PE models 6Fe(n,x)
* |Increase confidence in the % Lo
. . . 80 .. deutron
description at stable isotopes 2 e B
= before applying to unstable ones ~ I | e R izl
A+a-b | E ‘r./ /
#,’ CN DIR %‘, 40 ‘/-/
We will use (p,n) reactions ﬂ 3 /!
to measure neutron do/dE OMV A i SO & //,/\4 |
G‘Brookhaven' spectra B E | obiaz=az® 7T
National Laboratory E.=0 l_:, 16 1‘5 2‘0 2‘5

Incident Neutron Energy[MeV] 33



Status and perspectives




Current status

K

In the 1st year (out of 3), most effort was dedicated to coordination and
laying out groundwork

Most of technical effort has focused on
* Building the infrastructure
* Creating (multiple) database(s) of nuclear deformations

« Script to create EMPIRE inputs for all relevant nuclei and run
them on the NNDC cluster

* First experimental campaign
« Measurement of ®6Zr(p,n) evaporation neutron spectra
« Data analysis

Brookhaven

National Laboratory
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Nuclear deformation database

« Collected and organized information on nuclear deformations for
different approaches:

- CEA[1]

Nuclear structure deformation parameters Hartree-Fock-
Bogoliubov (HFB) and Gogny Force (DS1). This self-
consistent mean-field approach incorporates pairing
correlations and is commonly used in microscopic nuclear
structure modeling.

Nuclear structure deformation parameters computed using the
Five-Dimensional Collective Hamiltonian (5DCH) including
triaxial deformations.

.+ RIPL-3[2]

k? Brookhaven

National Laboratory

Recommended deformation parameters for nuclear levels
from optical model section

Ground state Pro&erties calculated within the Finite Range
Droplet Model (FRDM 1995), from the masses section

[1] hitps://www-

phynu.cea.fr/science en ligne/carte potentiels microscopiques/carte potentiel nucleaire eng.htm

00 HFB
1 5DCH

Fﬂ‘l—_”“

-0.6

-04 -0.2 0.0 0.2 0.4
Ground state deformation 8

0.6

Bl RIPL

-0.5 0.0 0.5
First 2+ state deformation B;

[2] https://Iwww-nds.iaea.org/RIPL-3/
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Data infrastructure

K

Collected information for all of the 900+ nuclides relevant to the project and
organized them by goal priority, Z, A, half-life, prior existence in the ENDF/B library

Assessed experimental data availability

« for the nuclei in the primar¥(goal list, we investigated the existence of any
experimental data in the EXFOR compilation

We found, as expected, that there are none for the vast majority, with only a few
?I\);I,%\e gc))ns consisting basically of derived Maxwellian Averaged Cross Sections

« In the future, we may expand this to all nuclei across the priority goals.
Wrote a main script to cycle through the relevant nuclei
 Generate EMPIRE inputs

 Run and generate fast-region ENDF-6 files
« Still needs to be fully integrated with deformation library and with ML priors

Brookhaven
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MACS,(KT) (b)

Developments In

If we “don’t know anything” we must
treat the problem probabilistically

resonance range

Exploring the alternative
approaches from the usual

10
probability tables
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2
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Level density measurement

* First experimental campaign at 9Zr(p.n), Ep=8 MeV,

2
Ohio University v | " Eperimin
« Measurement of %Zr(p,n) 10 S, Talys GCM
evaporation neutron spectra 3, | |
- Data analysis revealed peaks £ |
coming from 92Zr present in §107 ¢
the 9Zr-enriched sample % 02 |
» Additional measurement of g
92Zr(p,n) to quantify the o
contamination in the °°Zr 04 | . . . .
measurement. 0 2 4 6 8

Neutron energy (MeV)
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Perspectives

« Tasks underway or soon-to-be initiated:
« Generate a pool of training data for resonance region
« Library of ML-extrapolated cross-section priors
« Generation of preliminary evaluated files

« Challenges in defining validation possibilities

« Spent fuel
* Depletion
« Astrophysics
« 7
* Feedback, especially regarding model approaches and validation are
appreciated

I k? Brookhaven
National Laboratory
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Comparison between spherical
and CC
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Elastic cross section (shape +
compound)
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Total inelastic

Clear improvgment on the agreenbes|,1t to totql melastlc experlmeytal datz?0
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Convergence on number of channels
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Convergence on number of channels
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Convergence on number of channels
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Convergence on number of channels
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Sensitivity to deformation

Deformation uncertainty relates to cross-section uncertainty

Cross Section (barns)

'\? Brookhaven

National Laboratory
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Sensitivity to deformation

Deformation uncertainty relates to cross-section uncertainty

162-Dy(n,tot)
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— Spherical calculation
- - - CC; Raman deformation * 0.70
- === CC; Raman deformation * 0.80 T
—-- CC; Raman deformation * 0.90
CC; Raman deformation * 1.00
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- === CC; Raman deformation * 1.30
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When deforming the potential, the

volume should ed
Bang & Vaagen$Ro=Rq(1-2B%/4m)
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Angular distributions: Gd, Ho, W

More detailed analysis on the experimental data sets
Some elastic ang. dist. data actually contained inelastics
Ensured convergence regarding number of rotational channels

nucleus BZ* B4§ Agr BZ(SYSHI y _ -
. —

— -

-~y
~
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I$ \
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. fr e e Y P
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* At. Data. Nucl. & Data Tables, 78, (2001) 1  TPhys. Rev. C 70 (2004) 014604,

Phys. Rev. C 76 (2007) 024605
56

§ Ann. Nucl. Energy, 31 (2004) 1813;
Phys. Lett. 26B (1968) 127;
Ann. Nucl. Energy, 28 (2001) 1745
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Angular distributions: Gd, Ho, W

More detailed analysis on the experimental data sets
Some elastic ang. dist. data actually contained inelastics
Ensured convergence regarding number of rotational channels
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158,160Gd Angular distributions

Good agreement with experimental data obtained by the model
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165Ho “Quasi-elastic” angular

1Ho(n,n+n")
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165Ho experimental angular
distributions contain
inelastic contributions
(above ~1MeV)




165Ho “Quasi-elastic” angular

165Ho experimental anqular
165Ho(n,n+n") O eRp e
distributions contain
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165Ho “Quasi-elastic” angular

1Ho(n,n+n")
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165Ho (Quasi-)elastic angular

GooaI agreemen W&Pexperlmental data obtained by the model
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165Ho “Quasi-elastic” angular
istributs
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165Ho “Quasi-elastic” angular
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165Ho “Quasi-elastic” angular

In 2001, A. B. Smith
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182 — Elastic angular
ch]&;“el-b“&l%ﬁlmental data obtained by the model
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182W — 2* Inelastic ang. dist. (g,*=0.100mev)

Good agreement with experimental data obtained by the model
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182W — 4* Inelastic ang. dist. (E,*=0.329meV)
Good agreement with experimental data obtained by the model
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184W — Elastic and inelastic angular
distributions
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186\ — Elastic and inelastic angular
Ldistribution
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The fact that deforming KD allows to
consistently describe observed elastic
and inelastic angular distributions
remarkably well is very supportive of

. the model and of the adiabatic
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Angle-integrated inelastic cross
sections
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Capture cross sections

Our model gives a very good description of capture cross sections

1R . 74-W-184(n,g)

Cross Section (mbarns)
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Conclusion

We deformed spherical KD potential in CC calculations
to describe statically-deformed nuclei

* No free parameters (experimental deformations)

« Radius correction gives (small but) noticeable
effect

This approach provides provides remarkable results for
« Total, elastic, inelastic cross sections
» Elastic and inelastic angular distributions

Improvement of capture cross sections, in particular
their shape

This simple method is a good, consistent and general step
towards an OP capable of fully describing the rare-earth
I region, filling the current lack in this important region.
©
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National Laharatary 73



Goal: to improve systematics of the level density model parameters in the mass region of
fission products thereby enhancing the predictive power of level density models for
nuclear data evaluations.

Method:

* toreview and validate available literature data on level densities measured with
the different techniques over the mass range of the fission products (about 20 data
sets are available).

* to address gapsin level density systematics by conducting targeted experiments
at the Edwards Lab and benchmark models against experimental data

k? Brookhaven
National Laboratory 74




©

1. Create a reaction which proceeds through the compound reaction mechanism.
This implies selecting appropriate beam species and energies.

2. Differential spectra of particles emitted from compound reactions depends on
level density of nuclei populated.

We will use (p,n) reactions
to measure neutron do/dE
spectra

A+a-b

Brookhaven

National Laboratory
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Accelerator

Swinger magnet
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©

» We will study level densities for stable nuclei in the mass range of the 1-st fission yield
bump. Constraining level densities for stable nuclei will make it easier to extrapolate
them to neutron rich nuclei using available models

* Possible reactions (depending on target availability):

74-78,8082Gg(p,n)74-78.80-82B, 89Y (p,n)8Zr, 90-92.9496 7 (), 1 )90-92.94-
9%Nb.

« We commit 1 experiment per year, including data analysis

Brookhaven

National Laboratory
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Preequilibrium: Extended microscopic QM model

JlL CN « Reacti[;r;’:me
* Preequilibrium emissions become dominant at high energies P
I0MeV) P REEO __________
B “E
Goal: E, =0
« Use QM based ph ( and 2p2h) response 6Fe(n,x)
functions fgy, to model these direct-like reactions — proton
neutron
- - 801" —.- deutron 2
E+A & alpha = 1
o(E) = Z/ fBw(E, Epp)ophdE 2 - - triton : g
ph E-A :: 60 e
‘g’ 'I././
g 40 f /./"'
* Increase confidence in the description at stable % ,./' '
isotopes before applying to unstable ones g 2o /’/\‘
I "
0 RN A -
v Extending the classical picture of exciton model - " T — — ~3

Incident Neutron Energy[MeV]



Capture cross-sections

0,(E) (b)

104

102 1

lDI} 4

10—2 4

1074

Capture cross-sections have

110Cd

— full oy(E)
1/v part

.
g

—— compound part

AN

A 1/vpart —the shape is analytic, the
magnitude must be measured

A compound nuclear part consisting
of many resonances

« A smooth high-energy part that peaks
around 14 MeV with 0~100 mb

Practical division:

E
0y (E) = om\| 7+ + oon (E)

\

T
10~%

T
102

T
107

T
102 106

E (eV)
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Capture cross-sections

0,(E) (b)

104

102 1

lﬂl} 4

10—2 4

1074

Capture cross-sections

nave

There are too many resonances.

We cannot predict their position or width,
i and to be honest, we don’t care.

We only want an "average” cross section and some

/tic, the
I

sisting

at peaks
b

W notion (a PDF) that captures size of fluctuations

T T T T T
10~% 102 107 102 104 106
E (eV)

|| 0y(E) = om\| = +ocn(E)
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110Cd

Capture cross-section average values

Build reduced
order model of

11111

1

1

1

i

2 o1 i

MACS !
¢ :

1

1023 |

110Cd i
1037 |

1

1

1

104y !

Preliminary work
under NA-22
Intentional
Forensics
Venture

Test against

original cross-

sections or MACS

Learn parametric
(Z,A) dependence of
reduced order model

— fu
— 1
_— C
—
—— At

MACS, (kT) (b)
=

MACS(mb)
s = & Kk &
(=)

l MACS vs kT for Rul05
" | ° cs
0 : Random Forest Prediction
°

magiC” funCtiOn Transform model
0) ]/( ZAE ) back to cross-section

space
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Capture cross-section fluctuations

— [01(E),...,om(E)]

> P(0)=M-13u8(c-om(E))

20 R SoOOthing”

Use FUDGE as a generative
model to simulate cross-
section probability distribution
function (PDF)

Preliminary work under NCSP AM-6

U233 capture 300.0K

238U(n,g) cross-section PDF

Regression

.. .
.........
------

Query : 4 o
—_— . - .—«,___.. 7 ’
..{ 4 ’l b
f -"l . " 'l. 1A
Progression/ ! B " £ —A 1

Use age-progression
software to learn the
temperature (and energy?)
dependence of the cross-
section PDF
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Capture cross-section fluctuations

(clol-J — [Es, ..., E — [01(E),...,om(E)]

> P(0)=M-13u8(c-om(E))

20 R SoOOthing”

Use FUDGE as a generative
model to simulate cross-
section probability distribution
function (PDF)

Preliminary work under NCSP AM-6

U233 capture 300.0K

238U(n,g) cross-section PDF

log Pdf(xsc)

gy (b)

Joint PDF P(Otot, Oy)

1072 - )
: : 101
e
10°
I
1073 - :
: £ 1071
£ 1072
107% = -
1073
5 10 15 20 25

Ot (D)

As a hedge, can use the PDF’s
directly with estimates of RRR

spacings & widths
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Maxwellian Averaged Cross-Sections

The MACS is given by
MACS(keT) = — J'{ " Eal{E)e FeTdE E
] aRpd )= = i g FEd g
' S LkpT)* Jn *]
_ o) of
B EH . KT (keV)
Interestingly, the 1/v part can be done e
analytically, giving N
a,Eth % N i
MACS(kT) — MACSCN(kT) + oOp T VS i

k? Brookhaven

National Laboratory

kT (keV)



Maxwellian Averaged Cross-Sections

The MACS is given by

2 T
o LkpT

Lyl

MACS(kgT) =

il I--

v J'.{ Ea(Eje Fn

i

TdE

Our reduced order model:

MACS(kaT) =

el I'||||5|:.||'..-':|_J—H. .

AI_'I i
e — '}' 34.:1! - I
T

k? Brookhaven

National Laboratory

MACS, (kT) (b)

MACS, (kT) (b)

-2 4 1
102E H

-3 4 I
1035 H

110Cd

kT (kev)

110Cd

full gy(E)

1/v part

1/v part (analytic)
compound part

thermal

Atlas
Atlas MACS(30 keV)

kT (keV)




How to get back to “cross-section space”

Believe it or not, the MACS is actually a Laplace transform:

= L{f}(s) f(t)e™" dt
/ Y421
F(t) = L7HF}(E) = 5— lim e F(s) ds

271 T—o0 )i

We make t2he following identifications:

f(t) — ﬁaczv(E)E t - F
F(s) — (kj;)2MACSCN(kT) s —a/kT
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How to get back to “cross-section space”

Believe it or not, the MACS is actually a Laplace transform:

F(s) = L{f}(s) / f(t)e™" dt

v+ T

—1 . st
F() = L7HFY (1) = 5 lim L P
We make the following identifications: :
9 If we make a rational
ft) = ﬁUCN(E)E t— F approximation to the
(kT2 s — a/kT |MACS, the ILT is
F(s) — > MACScn (KT) / ANALYTIC

I k? Brookhaven
National Laboratory 87



5. Rational function
approximation

« Barycentric rational function
approximation using adaptive
Antoulas—Anderson algorithm

* Provide set of {kT, MACS(KT)} points,
a tolerance, max order m

e # parameters =3m
* Robust fit

« Trade off quality of fit for dimensional
reduction

* Analytic ILT
» Easily beats other schemes

L? Brookhaven

National Laboratory
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—— BFF Cheby. n=50
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We have experience with that!

» Evaluated files for these nuclides are either:

- Non-existent: or Comparison between EMPIRE and TENDL

* Created with oversimplified modeling = poor predictability G. P. A. Nobre!, D. A. Brown!, and M. W. Herman!

» Technical report BNL-114256-2017-INRE
(https://doi.org/10.2172/1656598)

» Produced evaluated files for isotopes with T /, = 1 day and
for g.s. and isomeric nuclides “bridging” them: ENDF/B-VIII.0

This report is a review of t
also discuss additions and moi

5 Differences in physics mod-
eling
There are several physics differences between the

EMPIRE based evaluations and those in TENDL-
2015. We summarize them here:

 Better treatment of :g'
t nuclei and isomeric targets

e Since EMPIRE does proper deformed coupled-
channel calculations, it obtains better and
more reliable cross sections for the well-
deformed rare-earth nuclei, as it implements
the adiabatic model proposed and tested in

Refs. [8, 9]
~y : e Both codes make different choices of levels to
G Fiogaven le in coupled-channel calculati
ational Laboratory couple In coupled-channel calculations.

1l
it

! National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973, USA

e Experimental data for resonances in the cases

of such unstable nuclei are inexistent, with few
exceptions. However, the resonance treatment
from TENDL, which artificially creates several
realistic-looking resonances without any exper-
imental grounds, may lead to misinterpreta-
tion of the evaluation considering that it is not
possible within th ENDF-6 format to disguish
such resonance regions from the ones based on
experimental data.

The resonances from TENDL are extrapolated
from fast region and therefore are normally 3
to 4 orders of magnitude too high.

TENDL gets the 1 mb capture cross section at
14 MeV always right while the EMPIRE pre-
liminary calculations have not yet been tuned
to reproduce this value.


https://doi.org/10.2172/1656598

Explain why it is challenging to produce

reliable evaluations off stability

K

Lack of experimental data. Perhaps show a table or plot with the
number of EXFOR isotopic entries as a function of mass number

for a given fission product.

Need theory: Need to be extra careful with model choices and

parametrizations

Current SOIUtlonS (TENDL Wlth thAa ArnrAa~n~ h AArvARlA+tARAAA~ IhAfAvrA

accuracy) have estimated cross [

as high as 50%

Brookhaven
National Laboratory

= == TENDL
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We have experience with that!

» Evaluated files for these nuclides are either:

- Non-existent: or Comparison between EMPIRE and TENDL

* Created with oversimplified modeling = poor predictability G. P. A. Nobre!, D. A. Brown!, and M. W. Herman!

» Technical report BNL-114256-2017-INRE
(https://doi.org/10.2172/1656598)

» Produced evaluated files for isotopes with T /, = 1 day and
for g.s. and isomeric nuclides “bridging” them: ENDF/B-VIII.0

This report is a review of t
also discuss additions and moi

5 Differences in physics mod-
eling
There are several physics differences between the

EMPIRE based evaluations and those in TENDL-
2015. We summarize them here:

 Better treatment of :g'
t nuclei and isomeric targets

e Since EMPIRE does proper deformed coupled-
channel calculations, it obtains better and
more reliable cross sections for the well-
deformed rare-earth nuclei, as it implements
the adiabatic model proposed and tested in

Refs. [8, 9]
~y : e Both codes make different choices of levels to
G Fiogaven le in coupled-channel calculati
ational Laboratory couple In coupled-channel calculations.

1l
it

! National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973, USA

e Experimental data for resonances in the cases

of such unstable nuclei are inexistent, with few
exceptions. However, the resonance treatment
from TENDL, which artificially creates several
realistic-looking resonances without any exper-
imental grounds, may lead to misinterpreta-
tion of the evaluation considering that it is not
possible within th ENDF-6 format to disguish
such resonance regions from the ones based on
experimental data.

The resonances from TENDL are extrapolated
from fast region and therefore are normally 3
to 4 orders of magnitude too high.

TENDL gets the 1 mb capture cross section at
14 MeV always right while the EMPIRE pre-
liminary calculations have not yet been tuned
to reproduce this value.


https://doi.org/10.2172/1656598
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We have experience with that!

* Predictive adiabatic
model for deformed nuclei

* Proper treatment changes
cross sections by orders
of magnitude

PHYSICAL REVIEW C 91, 024618 (2015)

Derivation of an optical potential for statically deformed rare-earth nuclei
from a global spherical potential

G.P. A. Nobre,” A. Palumbo, M. Herman, D. Brown, and S. Hoblit
National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

F. S. Dietrich
P.O. Box 30423, Walnut Creek, California 94598, USA
(Received 23 December 2014; published 25 February 2015)
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FIG. 11. (Color online) Elastic angular distributions for neutron-induced reactions on '®*W. The curves correspond to predictions by our
CC model. Numbers on the left-hand side of each plot indicate, in MeV, the values of incident energy at which the cross sections were measured,
while the numbers on the right-hand side correspond to the multiplicative factor applied to be able to plot data from different incident energies

in the same graph. Experimental data taken from Refs. [36-38] and their correspondence to each data set is indicated in the legends.
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FIG. 1. (Color online) Total cross sections for neutrons scattered
by a '%>Ho and '#218%136W targets for incident energies ranging from
as low as =3 keV to as high as 200 MeV, which is the upper limit
of validity for the KD optical potential [2]. The solid black curves
correspond to the predictions of our CC model, while the dashed
red curves are the results of calculations within the spherical model.
The experimental data were taken from the EXFOR nuclear data
library [39].



We have experience with that!

Capture PDF: 238U+n

* Neutron resonances: On stability, we have high quality 1034
resonance data from both the ENDF/B library and from
BNL'’s vaunted Atlas of Neutron Resonances. Off
stability or whenever data is not available, the resolved 10-14
resonance region cannot possibly be addressed reliably.

Data

10! —— Fit: levy

W
Instead of generating stochastic resonances such as 2 10734
done for TENDL [17] with TARES [23] we should treat E=0024M
105 = . eV
the whole resonance range as unresolved.
10-7
L
™ LB L | LBLILLELLL | UBLLRLLLLL | UNLELRLLLL I ELLRLLLL |
10-3 1072 10-! 10° 10! 10°
ags . . . alo
PY = The 23¥U(n,g) cross section probability distribution a 0K
P reeq u I I I b rl u m " M I CrOSCO p IC stochastically generated by FUDGE and fit with a two parameter
I " Levy Distribution. We have since found higher quality fits with a
m Od el fro m Em an u el C hl m a n Skl ) one parameter Stable Distribution.

constrained by on-stability data
from A. Voinov

¢ Brookhaven
k 95
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We have experience with that!

* Development and training of Conditional Adversarial
Autoencoder (CAAE): LLNL project to use Machine
Learning to train on known cross sections to make
predictions for neighboring nuclei

» Will provide priors for capture and possibly inelastic

240 1

0.5 1

0

Cross sections

Uncertainty quantification

from up, MAE = 0.032%

from up-right, MAE = 0.0229
froen up-left, MAE = 003712
from right, MAE = 0.04274

from left, MAE = 004698

from down, MAE =0.05712

froem down-right, MAE = 0.0602%
from down-left, MAE = 0.0221
center

n 25 30

Example from a preliminary trend
prediction built on paired cycleGAN like
architectures. The cross section is
predicted using only the cross section of
neighboring nuclei with high fidelity and
complex feature reconstruction. This
version depends on a explicit fixed energy
grid whereas the transformer base
networks will enable an adaptive energy
grid.

Mg T5e Tiga ea ga
'."3#5 ]‘ﬂn's '.'5#5 ]‘E‘.ﬂ.ﬁ '.'T"||g,‘5
Zra e M BEe e

Pictorial representation of the transformer’s actions. The
transformer is trained to directionally transform a collection of
nuclear cross sections and discrete information from one nucleus
to another bidirectionally (i.e., the transformer is trained as its
own inverse). In this way, is learns the impact of adding or
removing protons and neutrons instead of memorizing cross
sections as a function of proton and neutron number. While the
figure depicts only nearest neighbor connections, the networks
can be tuned past nearest neighbor and with biased linkages to
closed proton and neutrons shells to add awareness of shell
effects.
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Preequilibrium: Extended microscopic QM model

JlL CN « Reacti[;r;’:me
* Preequilibrium emissions become dominant at high energies P
I0MeV) P REEO __________
B “E
Goal: E, =0
« Use QM based ph ( and 2p2h) response 6Fe(n,x)
functions fgy, to model these direct-like reactions — proton
neutron
- - 801" —.- deutron 2
E+A & alpha = 1
o(E) = Z/ fBw(E, Epp)ophdE 2 - - triton : g
ph E-A :: 60 e
‘g’ 'I././
g 40 f /./"'
* Increase confidence in the description at stable % ,./' '
isotopes before applying to unstable ones g 2o /’/\‘
I "
0 RN A -
v Extending the classical picture of exciton model - " T — — ~3

Incident Neutron Energy[MeV]
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