

Nuclear data validation and verifications for IFMIF-DONES

Yuefeng Qiu¹, Bor Kos^{2*}, Gašper Žerovnik^{2*}, Jan Malec², Victor Lopez³.

¹KIT, Germany,
² JSI, Slovenia, *(previous member)
³ UNED, Spain

Consultancy Meeting on the Preparation of a Major FENDL Release, 13 - 16 May 2025, IAEA Vienna.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

- Neutron transport cross section
- DPA and gas production uncertainties
- Deuteron cross sections
- Summary and discussion

Introduction of IFMIF-DONES facility

- IFMIF-DONES: International Fusion Material Irradiation Facility - DEmo Oriented Neutron Source
- Provide irradiation data for the construction of DEMO
 - Deuteron accelerator (125 mA, 40 MeV), generating fusionrelevant neutrons through Li(d,xn) reactions
- Currently under construction at Granada, Spain
 - Handover phase between EUROfusion and IFMIF-DONES consortium on-going.
 - Estimation of first irradiation in early 30s

Source: fusionforenergy.europa.eu

- Neutrons in different energies at DONES target region
 - Large amount of neutrons with energy consistent with fusion 0.1-14 MeV
 - **12%-14%** of neutrons with energy higher than 14 MeV.
- We observe the lack of high-energy validation benchmarks, including simulation and experiments.

Neutron		High Flux Test
energy[MeV]	Target back-plate	Module
<0.1	2.6%	3.1%
0.1-1	28%	31%
1-14	58%	52%
14-20	6.0%	7.3%
>20	6.1%	6.6%
Total flux [n/cm ² /s]	1.35E+15	9.89E+13

Neutron flux spectra at different location of test cell

High-energy leakage sphere simulation benchmark

Report: B. Kos, et.al. EUROfusion IDM **2RMEHN**

- Leakage sphere: computation benchmark used in JADE. point source with target neutron spectrum calculated using McDeLicious code.
- Elements: all 192 nuclides in FENDL3.2b is tested, key elements for DONES (Li, Be, B, O, Si, Ca, Cr, Fe, Ni, Cr, Cu, Zr, W, Pb) are analysed
- Libraries: FENDL-3.1d (T1), FENDL-3.2b(T2) and JEFF-3.3 (reference, R).
- **Analysis Tools**: JADE code is mainly used for automatic MCNP input, execution, output and plotting.
- **C/C**: providing deviations between the libraries.

Model and neutron spectrumd

- No Significant Differences (Within Statistical Fluctuations)
 - Isotopes: ¹⁶O, ¹⁷O, ¹⁸O, ²⁹Si, ³⁰Si, ⁴⁰Ca, ⁴²Ca, ⁴³Ca, ⁵⁸Fe, ⁶¹Ni, ⁶⁴Ni, ⁹⁰Zr, ⁹¹Zr, ⁹²Zr, ⁹⁴Zr, ⁹⁶Zr, ²⁰⁴Pb
- Slight Differences (Factor ≤ 1.5, Specific Energy Ranges)
 - ²³Na, ⁴⁴Ca, ⁴⁶Ca, ⁵⁰Cr, ⁵²Cr, ⁵³Cr, ⁵⁴Cr
- Notable differences Primarily Below 20 MeV
 - ⁶³Cu, ⁶⁵Cu, ¹⁸²W
- Notable differences Above 20 MeV
 - ¹⁸⁶W, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb
- Significant Differences Above 20 MeV (Factor > 2, Further Investigation Needed)
 - ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹¹B, ²⁸Si, ⁵⁸Ni, ⁶⁰Ni, ¹⁸³W, ¹⁸⁴W

10-

10-6

10-8

10-9

É 10^{−10}

₽₁₀₋₁,

lσ[%]

 10^{-12}

102

10

100

0.5

10

15

2.0 2/1.5 1.5 1.0

² 10^{−7} #] 10^{−7}

Slight Differences: ⁷Li, ²³Na, ⁴⁴Ca, ⁴⁶Ca, ⁵⁰Cr, ⁵²Cr, ⁵³Cr, ⁵⁴Cr

• Differences Primarily Below 20 MeV: ⁶³Cu, ⁶⁵Cu, ¹⁸²W

• Differences above 20 MeV: ¹⁸⁶W, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb

10-

Elux [#/cm²]

Neutron 10⁻¹⁰

10-12

 10^{-12}

lσ [%]

T_i/R 1.5

10

2.0

1.0

0.5

10

15

20

25

30

35

Energy [MeV]

40

High-energy leakage sphere simulation benchmark

Leakage Neutron Flux (VITAMIN-J+)

⁹Be

30 35 Energy [MeV]

25

- Significant Differences Above 20 MeV (Factor > 2): ⁶Li, ⁹Be, ¹⁰B, ¹¹B, ²⁸Si, ⁵⁸Ni, ⁶⁰Ni, ⁶²Ni, ¹⁸⁰W, ¹⁸³W, ¹⁸⁴W
- The difference of ¹⁰B and ¹¹B between FENDL3.1d and ٠ FENDL3.2b are also quite significant.

3006 (JEFF-3.3)

T1: 3006 (FENDL 3.1d)

[2: 3006 (FENDL 3.2b)

50

 10^{-5}

Neutron Flux [#/cm²] 10⁻⁶ [#/cm²] 10⁻⁹ 10⁻¹⁰

10-11

10²

10

100

2.0

1.0

0.5

10

15

20

lσ [%]

T,/R 1.5

55

Leakage Neutron Flux (VITAMIN-J+)

⁶Li

High-energy leakage sphere simulation benchmark

Significant Differences Above 20 MeV (Factor > 2): ⁶Li, ⁹Be, ¹⁰B, ¹¹B, ²⁸Si, ⁵⁸Ni, ⁶⁰Ni, ⁶²Ni, ¹⁸⁰W, ¹⁸³W, ¹⁸⁴W

Significant Differences Above 20 MeV (Factor > 2): ⁶Li, ⁹Be, ¹⁰B, ¹¹B, ²⁸Si, ⁵⁸Ni, ⁶⁰Ni, ⁶²Ni, ¹⁸⁰W, ¹⁸³W, ¹⁸⁴W

High-energy leakage sphere simulation benchmark

- Significant Differences Above 20 MeV (Factor > 2):⁶Li, ⁹Be, ¹⁰B, ¹¹B, ²⁸Si, ⁵⁸Ni, ⁶⁰Ni, ⁶²Ni, ¹⁸⁰W, ¹⁸³W, ¹⁸⁴W
- In the case of ¹⁸⁰W, JEFF-3.3 is about 2-3 order of magnitude higher, and has a peak at 30 MeV which does not visible in FENDL3.1d and FENDL3.2b.

- Fe data are overall in good consistency
 - FENDL-3.1d shows significantly higher results in ⁵⁶Fe data in the energy range between 15 MeV and 20 MeV

IFMIF-DONES computational benchmark

- Target backplate and HFTM
 - Deviation of around 5 % between 10-55 MeV.s
 - Between 15 MeV and 20 MeV the FENDL-3.1d results differ from the FENDL-3.2b results.
 - Differences in the ⁵⁶Fe nuclear data could be the cause

- Concrete downstream and lateral
 - Statistics are poor, which can count for some deviations.
 - 15-20 MeV range for the FENDL-3.1d is deviate from JEFF-3.3 for 20%-40%.

13 - 16 May 2025, IAEA Vienna. | Page 16

- Steel liner downstream and lateral
 - Similar finding for FENDL3-1d between 15-20 MeV
 - It has visible impact on the shielding calculation
 - We have recommended the DONES guideline to use FENDL3.2b Fe data.

IFMIF-DONES computational benchmark

• Neutron and gamma flux, heating, DPA computed with FENDL3.1d and FENDL3.2b

DPA difference are small in HFTM, but high at concrete downstream (negligible impact).

Neutron heating in FENDL-3.2b increase 7%, which brings uncertainties for the HFTM design.

Together with the gamma heating, the total heating is expect to have ${\sim}5\%$ of deviation.

• Additional safety margins need to be considered in HFTM heat removal design.

Typical nuclear responses, FENDL-3.1d/FENDL-3.2b

Neutron _ flux	1.0030 ± 0.0003	1.0068 ±0.0002	1.0067 ± 0.0003	$1.0369 \\ \pm 0.0020$	1.0204 ±0.0022	1.0293 ±0.0003	1.0247 ±0.0004	
EUROFER Neutron _ damage	1.0090 ±0.0003	1.0165 ±0.0002	1.0160 ±0.0003	1.0744 ±0.0031	1.0503 ±0.0037	1.0471 ±0.0004	1.0396 ±0.0006	
Neutron heating	0.9314 ± 0.0004	0.9263 ± 0.0003	0.9247 ± 0.0004	0.9944 ± 0.0049	1.0236 ±0.0052	0.9654 ± 0.0007	1.0136 ± 0.0011	
Gamma _ flux	0.9492 ±0.0004	$0.9364 \\ \pm 0.0002$	0.9436 ±0.0003	1.0381 ±0.0023	1.0338 ±0.0029	0.9972 ±0.0004	0.9986 ±0.0007	
Gamma . heating	0.9737 ±0.0006	0.9782 ±0.0004	0.9788 ± 0.0004	1.0429 ±0.0028	1.0314 ±0.0034	1.0012 ±0.0006	0.9911 ±0.0010	
Backplate HETM capsiles Concrete Lateral Backplate HETM Capsiles Concrete Lateral Stainless Steelines Stee								

- Neutron transport cross section
- DPA and gas production uncertainties
- Deuteron cross sections
- Summary and discussion

1000

100

10

- Damage dose rate (NRT) in the High Flux Test Module (HFTM)
 - Center 5-20 dpa/fpy, and side 1-5 dpa/fpy.
- He production
 - Production rate at the center-front capsules : 120-190 appm/fpy,
 - Synergistic effect of DPA and Helium production:
 - DEMO value: 11-14 He-appm/DPA
 - DONES: ~14-15 He-appm/DPA.

Damage doses rate in DONES HFTM

He-DPA ratio in DONES HFTM

Estimation of DPA uncertainties

Report: G. Zerovnik, et.al. EUROfusion IDM 2PLVP6

- Objective: Uncertainty on the DPA values calculated in DONES and DEMO
- Libraries: reference EUROFER DPA library(MT=900 arc-dpa and MT=901 NRT-dpa) from KIT (A.Yu.
 Konobeyev, et.al), up to 150 MeV, including covariance data.
- Neutron flux: DONES detailed model (IFMIF), DONES simplified model (ENS) and DEMO (upper limiter spectra from HCPB and WCLL concept)
- Simulation tools: MCNP, ADVANTG, NJOY. SANDY for random sampling and RR_UNC for deterministic estimation.

Simplified DONES HFTM model (label: ENS)

Yuefeng Qiu | Consultancy Meeting on the Preparation of a Major FENDL Release, 13 - 16 May 2025, IAEA Vienna. | Page 21

Correlation matrix, MT=901

- DPA uncertainty along the neutron energy
 - ~23% for dpa-NRT at fast neutron energy.
 - The estimation from SANDY and RR_UNC confirms this value.
 - A good piece of information for understanding the DONES irradiation performance.

Incident neutron energy / eV

EUROFER DPA uncertainty based (base lib JEFF-3.3)

Overall average uncertainty within 23%

Irradiation facility	Nominal value	Mean value	Relative standard		Relative standard] _
	(unperturbed)	(SANDY)	deviation (SAN	IDY)	deviation (RR_UNC)	
ENS "cell 10"	729.7 b	727.3(9.1) b	0.217		0.234] (
ENS "cell 16"	665.8 b	663.4(8.3) b	0.217		0.234	
ENS "cell 17"	855.4 b	863(11) b	0.217		0.236	
ENS "cell 29"	681.3 b	679.0(8.5) b	0.217		0.234	
НСРВ	391.7 b	385.9(4.8) b	0.216		0.233	
WCLL	185.7 b	196.3(2.5) b	0.221		0.232	
IFMIF "cell 33726"	704.4 b	704.0(8.8) b	0.217		0.234	

Flux averaged DPA cross section and uncertainties

Estimation of Fe-56 gas production uncertainties

- Objective: obtain a clear picture on uncertainties of gas (He+H) productions estimated for DONES and DEMO
- Fe-56 gas production Libraries :
 - JEFF-3.3: uncertainty data up to 20 MeV.
 - **FENDL-3.1d**: <20 MeV identical with JEFF3.3, unphysical jump above 20 MeV.
 - TENDL-2021: uncertainty data **up to 30 MeV**.
 - JENDL-4.0/HE: no uncertainty data
 - ENDF/B-VII.0: no uncertainty data
- Uncertainty for Fe-56 :
 - JEFF-3.3: high at threshold energy, 3% from 6-12 MeV, and increases to 20% at 20 MeV.
 - TENDL-2021: overall 10% from 5-30MeV.

Relative uncertainty of the gas production in Fe-56

Cross sections for gas (MT=203-207) production in ⁵⁶Fe

ENDF/B-VIII.0 is the main outliner

- Estimated uncertainty based on the fluxaveraged gas production cross section
 - Gas production(MT=203-207) : +- 15% for DONES and +- 10% for DEMO around mean values
 - He productions (MT=206-207): +- 25%-30% for DONES around mean values, and 15%-20% for DEMO.
- Key takeaway
 - Gas production uncertainty data are mostly missing for cross section above 20 MeV.
 - The calculated values among the libraries give ~15-30% for DONES.
 - New release of FENDL and other libraries needs to be assessed in the next step.

Spec. \ ND library	JEFF-3.3	JENDL-4.0/HE	ENDF/B-VIII.0	FENDL-3.1d	TENDL-2021*
ENS "cell 10"	0.121 b	0.129 b	0.146 b	0.130 b	0.110 b
ENS "cell 16"	0.128 b	0.136 b	0.154 b	0.137 b	0.116 b
ENS "cell 17"	0.123 b	0.131 b	0.148 b	0.131 b	0.112 b
ENS "cell 29"	0.127 b	0.135 b	0.152 b	0.135 b	0.115 b
НСРВ	0.167 b	0.178 b	0.154 b	0.167 b	0.141 b
WCLL	0.156 b	0.165	0.144 b	0.156 b	0.132 b
IFMIF "cell 33726"	0.173 b	0.184 b	0.212 b	0.187 b	0.156 b

Gas production cross sections average over spectra

Spec. \ ND library	JEFF-3.3	JENDL-4.0/HE	ENDF/B-VIII.0	FENDL-3.1d	TENDL-2021*
ENS "cell 10"	0.0248 b	0.0265 b	0.0330 b	0.0256 b	0.0183 b
ENS "cell 16"	0.0261 b	0.0278 b	0.0345 b	0.0269 b	0.0193 b
ENS "cell 17"	0.0252 b	0.0270 b	0.0335 b	0.0260 b	0.0186 b
ENS "cell 29"	0.0259 b	0.0276 b	0.0343 b	0.0267 b	0.0191 b
НСРВ	0.0328 b	0.0331 b	0.0376 b	0.0328 b	0.0248 b
WCLL	0.0307 b	0.0310 b	0.0354 b	0.0307 b	0.0230 b
IFMIF "cell 33726"	0.0346 b	0.0370 b	0.0451 b	0.0364 b	0.0265 b

He production cross sections average over spectra

Estimation of EUROFER gas production

- Comparison between FENDL3.1d and FENDL3.2b
 - Average over the HFTM capsules
 - Helium production: overall estimated deviation **15%**
 - Hydrogen production overall estimated deviation 5%
- Large impact on the He/DPA feature of DONES
 - Need to further validate the data and calculations

a) +	5.0	He ratio [appm He NRT_dpa ⁻¹ fpy ⁻¹]	
			-

		Helium	Helium	Ratio-He	Hydrogen	Hydrogen	Ratio-H
	damage dose	appm/dpa	appm/dpa	FENDL3.2b/FE	appm/dpa	appm/dpa	FENDL3.2b/F
	(dpa/fpy)	(FENDL3.1d)	(FENDL3.2b)	NDL3.1d	(FENDL3.1d)	(FENDL3.2b)	ENDL3.1d
Row1-1	9.30	12.44	14.32	1.15	53.64	56.60	1.055
Row1-2	14.90	12.91	14.88	1.15	55.61	58.74	1.056
Row1-3	15.36	12.98	14.95	1.15	55.88	59.01	1.056
Row1-4	11.75	13.28	15.31	1.15	57.09	60.29	1.056
Row2-1	5.61	12.29	14.04	1.14	52.92	55.38	1.046
Row2-2	9.30	13.14	15.04	1.14	56.45	59.14	1.048
Row2-3	9.70	13.24	15.16	1.14	56.88	59.59	1.048
Row2-4	7.50	13.48	15.44	1.15	57.82	60.57	1.048

- Neutron transport cross section
- DPA and gas production uncertainties
- Deuteron cross sections
- Summary and discussion

- Current **deuteron data** used for DONES neutronics
 - Transport: TENDL-2021, JENDL-5
 - Activation: TENDL-2021
 - Li library: FZK-2005 (KIT d-Li evaluation)
- Important elements for accelerators: Cu, Al, Fe, W, Nb, Mn, Zr, Cr

systems	Beam facing materials
Injector/LEBT	SS304L, Copper
RFQ	Copper
MEBT	SS316L, Copper
SRF	NbTi,
HPBD	Copper,
HEBT	CuCrZr, SS316L, Alumiumum
Target	Li, EUROFER

Comparison of two deuteron libraries

	TENDL-2021 +	JENDL-5		
Isotopes	++ Huge list (2850)	 9 isotopes Li-6,7, Be-9, C-12,13, Al- 27, Cu-63,65, and Nb-93 		
Neutron yield data	Overall underestimated.	+ Close to the experiment data		
Activation data	 complete set of activation data Many of them are away from the experimental data 	Lack of activation data		
d-Li data	- From ENDF/B-VIII.0	+ good evaluation with experiments (Hagiwara.et.al.)		

13 - 16 May 2025, IAEA Vienna. | Page 27

Deuteron neutron yield data

d-^{nat}Cu neutron yield at 0-deg

d-²⁷Al neutron yield at 0-deg

d-natC neutron yield at 0/30-deg

- TENDL tend to underestimate the neutron yield, except C-nat.
- JENDL-5 data is used in DONES as long as available
- Systematic reviews of the data are urgently needed

Deuteron activation data

- New nuclear models have been updated by M. Avrigeanu et.al. [1] in the new version of the TALYS code.
- TENDL cannot be produced with this update, since this TALYS version has to be combined with the FRESCO code in the workflow.
- JENDL activation data
 - reconstructed from secondary particle yield data
 - Not suitable for activation calculations.
- Ongoing activities
 - Collaboration with QST/JAEA on the JENDL-5 deuteron data V&V under the EU-JA bilateral agreement. Aiming at a systematic review and improvement.
 - 40 MeV d-Li activation (Be-7 and Tritium) and d-Cu activation measurement at GANIL/NFS in 2025.

- These isotopes need to be further reviewed: ⁶Li, ⁹Be, ¹⁰B, ¹¹B, ²⁸Si, ⁵⁸Ni, ⁶⁰Ni, ⁶²Ni, ¹⁸⁰W, ¹⁸³W, ¹⁸⁴W.
- ¹⁰B, ¹¹B data are deviating significantly between FENDL3.1d and FENDL3.2b, and ¹⁸⁰W which significant different of several order of magnitude between FENDL3.2b and JEFF-3.3.
- Impacts of changing Fendl3.1d to FENDL3.2b: neutron flux at 15-20 MeV decreases for ~5% at target and HFTM, and 20-40% at Concrete and steel liner. The nuclear heating increases instead by 5-7%.
- Gas production uncertainty data is missing for energy above 30 MeV, cross section data are spread in +- 15%-30% for IFMIF-DONES HFTM.
- Impact of using FENDL3.2b increases the He production by **15%**, which needs to be further investigated.
- TENDL deuteron data overall underestimate the neutron yield, and the activation data can benefit from M. Avrigeanu's work on deuteron break-up enhancement. JENDL-5 provides good estimations on neutron yield, but the drawback is a short list of isotopes and the absence of activation libraries.
- Discussion
 - Other nuclear responses besides of neutron flux in the JADE leakage sphere benchmark.
 - Gas production uncertainty: key impact on the DONES irradiation performance.

Thank you!

IFMIF
DONES
GRANADATHE KEY
TO
THE FUTURE

Back-up slides

Stack, Row-Column	Neutron flux (/cm²/s)	DPA (dpa/fpy)	Nuclear heating (W/g)	H production (appm/fpy)	He production (appm/fpy)	H-ratio (appm/dp a)	He-ratio (appm/dp a)
1-3	2.57E+14	9.30	8.92E-01	4.71E+02	1.16E+02	50.6	12.4
1-4	3.91E+14	14.90	1.43E+00	7.82E+02	1.92E+02	52.5	12.9
1-5	4.01E+14	15.36	1.48E+00	8.10E+02	1.99E+02	52.7	13.0
1-6	3.04E+14	11.75	1.13E+00	6.33E+02	1.56E+02	53.8	13.3
2-3	1.68E+14	5.61	6.22E-01	2.80E+02	6.90E+01	49.9	12.3
2-4	2.56E+14	9.30	1.02E+00	4.95E+02	1.22E+02	53.2	13.1
2-5	2.65E+14	9.70	1.07E+00	5.20E+02	1.29E+02	53.6	13.2
2-6	2.04E+14	7.50	8.24E-01	4.09E+02	1.01E+02	54.5	13.5