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Introduction

• At the 2023 FENDL meeting we noted the following issues.
➢ Iron : JENDL-5 is better than FENDL-3.2b (=FENDL-3.2c).
➢

63Cu : JENDL-5 is better than FENDL-3.2b (=FENDL-3.2c).
➢ ESS beryllium S() data considering crystallite domain size

improve overestimation for low energy neutrons in beryllium
experiment.

• Last year we examined an issue which F4E group encountered in
analyzing FNG tungsten experiment.

• Here we introduce them briefly and propose additional requests to
the next FENDL.
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TIARA iron experiment -(1)

5

• 43 and 68 MeV of protons were bombarded on the
Li-7 target.

• The generated neutrons, 40 and 65 MeV, were
collimated and entered on the iron test shield.

• The neutron spectrum above 5 MeV was measured
by scintillators.

• Code: MCNP6.2
• Libraries: 

FENDL-3.2b (iron = FENDL-3.2c) 
JENDL-5 
ENDF/B-VIII.0
JEFF-3.3

• The measured neutron spectrum was used 
as the source neutron in MCNP.

Source

5.94 x 10-4 sr

neutron emitting angle

401

1
2
0

Tc Ts

additional
iron

collimator

iron or
concrete

shield

(Units in cm)

Calculation model
iron shield

(Iron or concrete)

Experimental configuration

(iron)

See the following report for more details about the 
experiments and analyses:

H. Nakashima et al., JAERI-Data/Code 96-005, 1996
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TIARA iron experiment -(2)
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Neutron spectra of 40 MeV neutrons
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Neutron spectra of 65 MeV neutrons
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TIARA iron experiment -(3)
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JENDL-5 is better than FENDL-3.2b.
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TIARA iron experiment -(4)
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We examine reasons of the large C/E differences by replacing elastic scattering or non-elastic 
scattering data of Fe56 to those in JENDL-5.

Possible reasons of the different calculation results
• Elastic scattering cross section (mt=2)
• Non-elastic scattering cross section (mt=5 or “total – elastic” : mt=5 equiv.) 
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TIARA iron experiment -(5)
Modified Fe56 files of FENDL-3.2b
• Replaced elastic scattering data (mt=2) by those in JENDL-5 F32b (elastic:J5)

• Replaced non-elastic scattering data (“total – elastic”) by those in JENDL-5 F32b (non-elastic:J5)

9

• Effect of elastic scattering data (mt=2) is small.
• Effect of non-elastic scattering data (mt=5) is large to continuum neutron fluxes.
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FNS iron experiment -(1)
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#3Overview of JAEA/FNS iron expt.
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whole energy and reaction rates of
several reactions were measured
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FENDL-3.2b and ENDF/B-VIII.0 overestimate the 
measured neutron spectrum below 10 keV!
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FNS iron experiment -(2)
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FENDL-3.2b and ENDF/B-VIII.0 tend to 
overestimate measured neutron flux below 10 
keV up to depth of 60 cm!

FENDL-3.2b and ENDF/B-VIII.0 tend 
to underestimate measured neutron 
flux above 10 MeV !
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Reasons of underestimation above 10 MeV

• FENDL-3.2b underestimates the measured neutron flux 
above 10 MeV.

• JENDL-5 shows the better agreement with the measured 
ones.

➢ The inelastic scattering and (n,np) reaction data of 56Fe 
cause the difference between FENDL-3.2b and JENDL-5.

12

• We compare the neutron fluxes between FENDL-3.2b and 
JENDL-5. 
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Reasons of overestimation below 10 keV

• Inelastic scattering and 
(n,2n) reaction data of Fe56 
and inelastic scattering data 
of Fe57 in FENDL-3.2b cause 
the overestimation of 
neutron flux below 10 keV.

13
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FNS copper experiment
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➢ FENDL-3.2b ( = FENDL-3.2c) is the best for neutrons over 
10 MeV. 

➢ FENDL-3.2b tends to underestimate as same as before. 
Only JENDL-5 shows the improvement due to 63Cu.
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JENDL-5 63Cu capture cross section
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JENDL-5 is very different below 400 eV from other libraries.

→ Improvement of 186W(n,)187W reaction rate
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FNS beryllium experiment -(1)
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➢ All libraries cause overestimation of reaction rates 
sensitive to low energy neutrons! 

(FENDL-3.2c Be9 is the same as FENDL-3.2b Be9.)

➢ This has been not solved for a long time…
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FNS beryllium experiment -(2)
Recently European Spallation Source (ESS) group produced beryllium thermal scattering law 
(TSL) data considering crystallite domain size*.

• D. D. DiJulio et al., Impact of crystallite size on the performance of a 
beryllium reflector, Journal of Neutron Research 22, 275–279 (2020).

• D. D. DiJulio et al., Thermal scattering libraries for cold and very-cold 
neutron reflector materials, EPJ Web of Conferences 284, 17013 (2023).

*

Pore

Crystal grain
boundary Crystal grain

Single crystallite

Multi crystallites Cross sections of 0.005 - 0.4 eV are very different corresponding 
to crystallite domain size! (because of extinction effect)
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FNS beryllium experiment -(3)

• Overestimation of reaction rates sensitive to lower energy neutrons decreases with 
increasing crystallite domain size!

• Data of 10 or 15 microns are the best!

• ESS data should be included in next FENDL.

18
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• Last year Dr. Laghi, F4E, reported FENDL is significantly worse (~0.4 C/E) than
JEFF and ENDF (~0.6 C/E) in gamma heating of the FNG W experiment with
MCNP input in SINBAD.

• Dr. Fabbri provided us the MCNP input file which Dr. Laghi used.
• Thus, we examined this issue.

➢ Code : MCNP6.2
➢ ACE file
✓ Official FENDL-3.2c ACE file
✓ Official ENDF/B-VIII.0 ACE file
✓ Official JEFF-3.3 ACE file
✓ Official JENDL-5 ACE file
✓ Photo-atomic : mcplib84

F4E analysis of FNG tungsten experiment

20
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Results -(1)

21

C/E of gamma heating with CaF TLD

• Our calculated gamma heating data
are similar to Dr. Laghi’s ones.

• Our calculation with JENDL-5 is
different from others.

• Our calculation with ENDF/B-VIII.0
stopped due to bad trouble
“erg>emax 100 times in one
collision.”.

• Thus, we deleted ”phys:n 16.0 0.”
because the first parameter emax
(e.g. 16.0 in ”phys:n 16.0 0.”) might
cause the bad trouble.
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Results -(2)

22

• If ”phys:n 16.0 0.” was deleted, the
calculated gamma heating data
changed drastically.

• The difference between gamma
heating data with FENDL-3.2c and
ENDF/B-VIII.0 became very small.

• We are afraid that ”phys:n 16.0 0.”
causes something wrong for tungsten
data of FENDL-3.2c and ENDF/B-VIII.0.

C/E of gamma heating with CaF TLD
”phys:n 16.0 0.” causes something wrong.
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Results -(3)

23

• If ”phys:n 16.0 0.” is deleted, all the
calculated gamma heating data are
almost the same.

• JENDL-5 with ”phys:n 16.0 0.” is the
same as JENDL-5 without ”phys:n
16.0 0.”

• Thus FENDL-3.2c, ENDF/B-VIII.0 and
JEFF-3.3 seem to have some
problems.

• After a lot of trials and errors we
specified the reason.C/E of gamma heating with CaF TLD

(without ”phys:n 16.0 0.” )
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Results -(4)

24

• The first two cross sections of MF3 MT28 (n,np) and
MT41 (n,2np) data in W isotopes of FENDL-3.2c,
ENDF/B-VIII.0 and JEFF-3.3 are 0.0 b as below.

• NJOY produces MT28 and MT41 cross sections from
the second energy, though it does MT28 and MT41
energy distribution data from the first energy.

• Probably this situation caused the problem.

• Thus we changed the second cross section 0.0 b to
a very small value (e.g. 10-20 b) in FENDL-3.2c.

• Then the modified FENDL-3.2 provides a good
result even with ”phys:n 16.0 0.” . C/E of gamma heating with CaF TLD

(with ”phys:n 16.0 0.” )
W182 MF3 MT41
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Results -(5)
• The issue can occur in a lot of nuclei of FENDL-3.2c.

Ag109, Ar036, Ar038, Ar040, Ba130, Ba132, Ba134, Ba135, Ba136, Ba137

Ba138, Bi209, Br079, Br081, C_013, Cd106, Cd111, Cd113, Ce136, Ce138

Ce140, Ce142, Co059, Cr050, Cr052, Cr053, Cr054, Cs133, Er162, Er164

Er166, Er167, Er168, Er170, F_019, Ga069, Ga071, Gd157, Gd160, Ge070

Ge072, Ge073, Ge074, Ge076, Hf174, Hf176, Hf177, Hf178, Hf179, Hf180

Lu175, Lu176, Mg024, Mg025, Mg026, Mo092, Mo094, Mo095, Mo096, Mo097

Mo098, Mo100, Nb093, O_016, O_017, O_018, Pb204, Pb206, Pb207, Pb208

Pt190, Pt192, Pt194, Pt195, Pt196, Pt198, Re185, Re187, S_032, S_033

Sb121, Sb123, Sc045, Ta181, Th232, Ti047, Ti048, Ti049, Ti050, W_180

W_182, W_183, W_184, W_186, Y_089, Zr090, Zr091, Zr092, Zr094, Zr096

25
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Results -(6)
• Solutions for the issue

1. To delete ‘Phys:n’ data
2. To change the second cross section 0.0 b to a very small value (e.g. 10-20 b) or to

delete the first energy data of MF3 and MF6 in the case that the first two cross
sections of MF3 are 0.0 b and to produce ACE files.

3. To modify NJOY not to delete first energy data of MF3 or to delete the first energy
data of MF6 in the case that the first two cross sections of MF3 are 0.0 b and to
produce ACE files with the modified NJOY.

4. To modify MCNP routine, where ACE data above emax are expunged.

• We already demonstrate that the first and second solutions are good.
• We confirm that the third solution is also successful.
• We have not tested the fourth solution because the source code of

MCNP6.2 is not available.
• We recommend to apply one of the above solutions to FENDL.
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Requests to next FENDL
• To revise iron and copper data.
• To add S(,) data. (for Be, ESS S(,) data is recommended.)
• To revise ENDF-6 files or ACE files of nuclei where the first two cross sections

of MF3 are 0.0 b.

• To adopt 199 group structure below 19.64 MeV for MATXS files (the present
FENDL MATXS files adopt 175 group structure below 19.64 MeV).
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Effect of 199 group structure below 20 MeV 
We analyzed FNS Be experiment by using FENDL-3.2c without TSL data.

29

DORT calculation result with 199 group is almost the same as MCNP one. 

• 175g : FENDL-3.2c MATXS (175 group structure below 19.64 MeV) 
• 199g : a new FENDL-3.2c MATXS with 199 group structure below 19.64 MeV
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Summary
• We reviewed the issues presented at the 2023 FENDL meeting.
➢ Iron : JENDL-5 is better than FENDL-3.2b (=FENDL-3.2c).
➢

63Cu : JENDL-5 is better than FENDL-3.2b (=FENDL-3.2c).
➢ ESS beryllium S() data considering crystallite domain size improve

overestimation for low energy neutrons in the FNS beryllium experiment.

• We examined an issue which F4E group encountered in analyzing FNG
tungsten experiment, which suggests that a lot of files in FENDL-3.2c include
data which NJOY does not support.

• We proposed several requests to the next FENDL.
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