

Simulation of the Radiation Environment at the National Ignition Facility

Consultancy Meeting on the Preparation of a Major Release of the Fusion Evaluated Nuclear Data Library (FENDL)

May 13-16, 2025

Hesham Khater

Lawrence Livermore National Laboratory

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Outline

- Detailed 3-D modeling of the NIF facility is developed to accurately simulate the radiation environment at the NIF
- Prompt dose during high yield (20 MJ) shots
- Post-shot dose environment following high yield shots
- Nuclear data needs for diagnostics development

NIF Layout

Features of the current NIF facility model

- Based on the facility as-built drawings
- 10-cm-thick Al Target Chamber (TC) wall surrounded by 40-cm of borated concrete
- 1.83-m -thick concrete Target Bay (TB) wall
- 99.1-cm-thick concrete Switchyard walls
- All Target Chamber, Target Bay and Switchyard wall penetrations are modeled
- Final Optics Assemblies (FOAs) are modeled
- All DIMs, TANDMs, positioners, and major diagnostics are modeled

Sectional view of the Target Bay

Horizontal view of TB at TCC (7 m above ground level)

Vertical views of TB and SY walls

Simulation approach

- Radiation transport simulations performed using the MCNP6.3 and the FENDL-3.2b neutron cross section library
- The Automated Variance Reduction Parameter Generator (ADVANTG) software was also used to create mesh-based weight windows (FW-CADIS method)
- Mesh tallies are used to produce prompt dose maps of the entire facility
- ICRP-74 fluence to effective dose conversion factors
- High yield shots of 20 MJ or 7.1x10¹⁸ neutrons per shot
- Maximum annual yield of 1200 MJ
- The NIF radiological design goal is to limit the maximum prompt dose in any occupied area to < 50 μ Sv per shot and < 1 mSv per year

Prompt dose map for the ground level during a 20 MJ shot

A new tool is developed to estimate post-shot dose rates

- AAMI (*Automated ALARA-MCNP Interface*) is a coupling scheme between radiation transport and neutron activation codes
 - <u>Step 1</u>: Neutron transport calculation using the MCNP 3D model to obtain 175-group flux spectra in each component of interest
 - <u>Step 2</u>: Activation analysis of components using the activation code, ALARA, to compute the γ -ray intensities and spectra for each cell and at different cooling times after a shot
 - <u>Step 3</u>: γ-rays computed in the second step are sampled and emitted from each activated component, and propagated by a transport simulation through the entire TB model
- Photon transport performed with user provided source subroutine
- Volume-based sampling used with weight adjustment to correct bias for source strength
- γ-ray fluxes are tallied using a fine 3-D grid over the entire Target Bay, and are converted into dose rates

Neutron Transport MCNP

Activation

Analysis

ALARA

Photon Transport

MCNP

Dose Rate

Calculation

ICRP-74 or Si Kerma

Model of the Target Bay during a shot

Dose rate map at Target Chamber equatorial plane following a 20 MJ shot (5 days cooling)

 $^{27}Al(n,\alpha)$ is the dominant reaction

NIF

Dose rates are dominated by the decay of ^{24}Na (T_{1/2}=15 h)

Two neutron diagnostics compromise the NIF yield of record

The well neutron activation detectors

The Well Neutron Activation Detectors ("Well NADs") are Zirconium disks fielded on NIF yield experiments that are absolutely calibrated

Cross-section dependencies are accounted for

NIF

LLNL-PRES-2005932

National Ignition Facility 14

Three activated Zr foils are retrieved and counted after the shot

The technique employs the 90Zr(n,2n)89Zr reaction

- Natural abundance of 90Zr is 51.45%
- Cross Section σ(14.1 MeV) is 622.0 mb
- Half Life T_{1/2} of ⁸⁹Zr is 3.267 days
- Reaction threshold energy Ethres is 12.1 MeV
- ⁸⁹Zr decays to ^{89m}Y meta stable state
- ^{89m}Y has a half life of 15.663 seconds and is in equilibrium with ⁸⁹Zr
- Branching ratio of the internal transition 909 keV gamma ray is 0.992
- A high purity Ge detector is used to count the Ey=909 keV line

Each sample is counted on multiple High Purity Germanium (HPGe) detectors, and at multiple source-detector distances

B151 low background Nuclear Counting Facility (NCF) has >40 years experience

The total number of counts is converted to incident neutrons based on MCNP modeling

		S	UMMA	RY OF P	EAKS W	ITH SIGNIF	ICANT NET	TOTALS		
INDEX	CHANNEL	KEV	(+/-)	- PEAK -		CALC.	PROP.	PHOTONS/MIN	BKGND	PCT
				START	END	COUNTS	COUNTS		CTS/MIN	ERROR
22	1817.655	909.011	0.00	1807	1823	131134	131317	1.42E+05	0.088	0.64
				2			3 11 1			

MCNP model of the Target Bay

MCNP model of the Well NADs

Per incident neutron, $\frac{A_{0_{MCNP}}}{\lambda} = (1.36393 \pm 0.00053) \times 10^{-7} \cdot atoms$

We use nToF measurements to study different sections of the fusion neutron energy spectrum

FIG. 5. An example of the components of the neutron energy spectra produced in an ICF experiment. This spectrum was produced from a simulation of a capsule with a fuel $\rho R = 0.25$ g/cm². The relative intensities of the different components can vary with ρR , but the basic shapes do not change significantly. The primary reactions in Eqs. (1) and (2) are shown in red, down-scattering of neutrons as they travel through the dense fuel results in the blue spectral component. Secondary DT reactions in which the triton (<1.01 MeV) is generated by the D(D,T)p reaction is shown in purple, and NKN RIF reactions are shown in green.

A. Moore et al., Rev. Sci. Instrum. 94, 061102 (2023)

South Pole nToF LOS

nToF detectors are fielded at the NIF to measure neutron yield, ion temperature, and downscattering in the cold fuel for D-T implosions

Recorded signal during a low yield shot (10¹⁶ neutrons)

A small fraction of "reaction-in-flight" (RIF) neutrons (with energy up to ~ 30 MeV) are produced by up-scattered deuterons or tritons undergoing D-T reaction with thermal ions

LLNL-PRES-2005932

Comparison between simulated background and recorded signal during a low yield shot

Photon dose at the -33' 9" floor during a 20 MJ shot

High photon dose due to streaming through the inner lower ring of beam ports

Final design of the nToF detector shielding

Shielding to reduce BG by factor of 10

- Steel
 - ✓ 7.5 cm all around
- Borated polyethylene
 - ✓ 20 cm on top
 - ✓ 12.5 cm on sides

Comparing simulated photon background to measured signals with shielding in place

We need to extend the nTOF diagnostics to 10x higher D-T yields, and maintain linearity

- One approach is to add physical material in the nTOF LOS's to reduce D-T neutron signals by 10x
- Must maintain measurements of the 4.4 MeV gammas (from target TMP) for timing/velocity inference and preserve DSR, D-D, and other measurements
- High-Z materials attenuate gammas and low-Z materials have "bumpy" cross-sections that impact D-D and DSR neutrons
- Silver appears to be a viable choice with smooth neutron cross-section, and acceptable attenuation of 1-20 neutrons, as well reasonable attenuation of the 4.4 MeV carbon gammas
- Better evaluation of the silver cross sections will be helpful

Limited experimental measurements of total neutron cross-section from 0.5-30 MeV for ¹⁰⁷Ag and ¹⁰⁹Ag

- We desire better evaluated total crosssection measurements
 - ¹⁰⁷Ag: 4.5-30 MeV
 - ¹⁰⁹Ag: 0.5-30 MeV
- There are subtle differences in cross sections for different evaluations
- We need to understand the relative signal differences at different energies

Locations of the real-time nuclear activation detector (RTNAD) in the NIF chamber.

Using real-time nuclear activation detectors for measuring neutron yields

- The RTNADs use a Zr cap as an activation material for inferring D-T neutron yields via ⁹⁰Z(n,2n)⁸⁹Zr
- The Zr cap surrounds a LaBr₃ scintillator, which is sensitive to gammas emitted from both the cap and the scintillator itself
- The LaBr₃ scintillators can be activated by lower energy neutrons, which is problematic for D-T neutron measurements, as it creates a source of background that can lead to high dead times immediately after the shot
- The fact that 2.5 MeV neutrons can activate the scintillator means the activation can be used to infer D-D neutron yields via the two reactions; ⁷⁹Br(n,n')^{79m}Br and ⁸¹Br(n,γ)⁸²Br
- More certain cross sections would enable more accurate understanding of sensitivities to the spectra

Good agreement between ENDF and measured cross sections (EXFOR) for ⁹⁰Zr (n,2n) reaction

Discrepancies between ENDF and measurements are observed in the ⁷⁹Br inelastic scattering reaction

- Inelastic scattering reaction with ⁷⁹Br has a threshold-like behavior making it a good candidate for measuring D-D neutron yields
- The decreasing cross section with decreasing energy makes the reaction less sensitive to D-D neutrons that lose energy through scattering
- The low-energy threshold behavior enhances the ability of the reaction to determine the angular distribution of the 2.5 MeV neutrons from the ICF implosion

B. Lahmann, et al., Rev. Sci. Instrum. 96, 033506 (2025)

Neutron reaction with ⁸¹Br is not suitable for inferring D-D neutron yield

- The neutron absorption reaction with ⁸¹Br rapidly increases with decreasing neutron energy
- While it is still possible to use this reaction to infer D-D neutron yield, it is a less ideal candidate as it is more sensitive to scattered neutrons and can compromise accurate determination of the neutron source distribution

Inelastic scattering of neutrons (E > 6 MeV) is important for development of gamma detectors

- 14 MeV neutrons inelastically scattering on relevant elements
 - C, AI, Si, W, etc.
 - Limited experimental data available
 - How accurate are the current libraries?

F. Maekawa & Y. Oyama, Nuclear Science and Engineering 123, 272 (1996)

List of reactions important for characterization of measured neutron spectrum

Foil (thickness)	Mass [g]	Reaction	Threshold [MeV] (@ 10 mb)	Primary radiation [keV] (intensity)	t _{1/2}
Au-1 (0.05 mm)	1.883	¹⁹⁷ Au(n,2n) ¹⁹⁶ Au ^{g+m1} ¹⁹⁷ Au(n,g) ¹⁹⁸ Au	8.1 (8.3) Thermal	355.7 (0.87) 411.8 (0.9562)	6.17 days 2.69 days
Ni (0.23 mm)	4.073	⁵⁸ Ni(n,2n) ⁵⁷ Ni ⁵⁸ Ni(n,p) ⁵⁸ Co ^{g+m1}	12.4 (13.3) 0 (1.3)	1378 (0.817) 810.8 (0.9945)	35.6 h 70.86 days
In (0.27 mm)	3.665	¹¹³ In(n,n') ¹¹³ In ^{m1} ¹¹⁵ In(n,n') ¹¹⁵ In ^{m1} ¹¹⁵ In(n,g) ¹¹⁶ In ^{m1}	0.4 (0.7) 0.336 (0.597) Thermal	391.7 (0.6494) 336.24 (0.459) 1293.56 (0.848)	99.5 min 4.49 h 54.29 min
Al (0.73 mm)	3.793	27 Al(n,a)24 Na	3.25 (6.7)	1368.63 (0.9999)	15 h
Ti (0.25 mm)	2.112	⁴⁶ Ti (n,2n) ⁴⁵ Ti ^{nat} Ti(n,x) ⁴⁶ Sc ^{nat} Ti(n,x) ⁴⁷ Sc ^{nat} Ti(n,x) ⁴⁸ Sc	13.5 (14) 2.1 (6) 0.8 (10.5) 3.3 (7.5)	511.0 (1.696) 1120.5 (0.9999) 159.38 (0.683) 1312.1 (1.001)	184.8 min 83.79 days 3.3492 days 43.67 h
W (0.12 mm)	4.304	¹⁸⁶ W(n,g) ¹⁸⁷ W	Thermal	685.51 (0.332)	24 h
Zr (0.27 mm)	3.083	90Zr(n,2n)89Zr	12.1 (12.1)	909.2 (0.9904)	78.41 h
Mg (0.09)	0.318	²⁴ Mg(n,p) ²⁴ Na	4.9 (6.4)	1368.63 (0.9999)	15 h
Au-2 (0.05 mm)	1.884	¹⁹⁷ Au(n,2n) ¹⁹⁶ Au ^{g+m1} ¹⁹⁷ Au(n,g) ¹⁹⁸ Au	8.1 (8.3) Thermal	355.7 (0.87) 411.8 (0.9562)	6.17 days 2.69 days

N. Quartemont et al., Nuclear Inst. and Methods in Phys. Research, A 1016, (2021)

Reaction-in-flight (RIF) neutrons as a diagnostic for hydrodynamical mixing in double shell ICF capsules

- The neutron-induced RIF process involves a 14 MeV neutron elastically scattering a D or T ion in the plasma
- The scattered ion undergoes a D-T reaction and RIF neutrons can be produced with energies up to 30 MeV
- RIF spectra are several orders of magnitude lower than the 14 MeV neutron signal
- RIF spectra are measured at NIF by nToF or by activation of foils made of materials with energy thresholds > 14 MeV
- ¹⁶⁹Tm(n,3n)¹⁶⁷Tm (E_{th} = 15 MeV) and ²⁰⁹Bi(n,4n)²⁰⁶Bi (E_{th} = 22.5 MeV) reactions, are used to measure the RIF spectrum

National Ignition Facility

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.