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Outline

• Detailed 3-D modeling of the NIF facility is developed to accurately simulate 

the radiation environment at the NIF

• Prompt dose during high yield (20 MJ) shots

• Post-shot dose environment following high yield shots

• Nuclear data needs for diagnostics development
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Features of the current NIF facility model 

• Based on the facility as-built drawings 

• 10-cm-thick Al Target Chamber (TC) wall 

surrounded by 40-cm of borated concrete

• 1.83-m -thick concrete Target Bay (TB) wall

• 99.1-cm-thick concrete Switchyard walls

• All Target Chamber, Target Bay and 

Switchyard wall penetrations are modeled

• Final Optics Assemblies (FOAs) are 

modeled

• All DIMs, TANDMs, positioners, and major 
diagnostics are modeled

MCNP model of the Target Chamber
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Sectional view of the Target Bay

-33’-9”

MCNP model of the Target Bay
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Horizontal view of TB at TCC (7 m above ground level)
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Vertical views of TB and SY walls
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Simulation approach

• Radiation transport simulations performed using the MCNP6.3 and the    

FENDL-3.2b neutron cross section library

• The Automated Variance Reduction Parameter Generator (ADVANTG) software 

was also used to create mesh-based weight windows (FW-CADIS method)

• Mesh tallies are used to produce prompt dose maps of the entire facility

• ICRP-74 fluence to effective dose conversion factors

• High yield shots of 20 MJ or 7.1x1018 neutrons per shot

• Maximum annual yield of 1200 MJ

• The NIF radiological design goal is to limit the maximum prompt dose in any 

occupied area to < 50 Sv per shot and < 1 mSv per year
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Prompt dose map for the ground level during 

a 20 MJ shot
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Dose at the Site Boundary (350 m from TCC) is 0.4 Sv/shot 

and 25 Sv for 1245 MJ/yr



A new tool is developed to estimate post-shot 

dose rates

• AAMI (Automated ALARA-MCNP Interface) is a coupling scheme 

between radiation transport and neutron activation codes 

— Step 1: Neutron transport calculation using the MCNP 3D model to 

obtain 175-group flux spectra in each component of interest

— Step 2: Activation analysis of components using the activation 
code, ALARA, to compute the -ray intensities and spectra for 

each cell and at different cooling times after a shot

— Step 3: -rays computed in the second step are sampled and 

emitted from each activated component, and propagated by a 

transport simulation through the entire TB model

• Photon transport performed with user provided source subroutine

• Volume-based sampling used with weight adjustment to correct bias 

for source strength

• -ray fluxes are tallied using a fine 3-D grid over the entire Target 

Bay, and are converted into dose rates
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Model of the Target Bay during a shot

IAEA FENDL Consultants Meeting
11LLNL-PRES-2005932

Equatorial view of the Target Bay

Lower SXI

TARPOS

Polar DIM

Upper SXI

Cryo 

TARPOS

Equatorial 

DIMs

MCNP model of inside of the TC

FFLEX

TANDM (90,124)

DIXI



Dose rate map at Target Chamber equatorial plane 

following a 20 MJ shot (5 days cooling)
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Dose rates are dominated by the decay of 24Na (T1/2=15 h)
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27Al(n,) is the dominant 

reaction



Two neutron diagnostics compromise the NIF yield of 

record

IAEA FENDL Consultants Meeting 13LLNL-PRES-2005932



The well neutron activation detectors
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Three activated Zr foils are retrieved and counted 

after the shot
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The total number of counts is converted to incident 

neutrons based on MCNP modeling
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We use nToF measurements to study different 

sections of the fusion neutron energy spectrum

A. Moore et al., Rev. Sci. Instrum. 94, 061102 (2023)



South Pole nToF LOS
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Port Collimator

nToF detectors are fielded at the NIF to measure neutron yield, ion temperature, 

and downscattering in the cold fuel for D-T implosions



Recorded signal during a low yield shot (1016 neutrons)
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Interfering with RIF 
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A small fraction of “reaction-in-flight” (RIF) neutrons (with energy up to ~ 30 MeV) 

are produced by up-scattered deuterons or tritons undergoing D-T reaction with 

thermal ions



Comparison between simulated background and 

recorded signal during a low yield shot 
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Photon dose at the -33’ 9” floor during a 20 MJ shot
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Final design of the nToF detector shielding
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Shielding to reduce BG by factor of 10

• Steel

✓ 7.5 cm all around

• Borated polyethylene

✓ 20 cm on top
✓ 12.5 cm on sides

SPEC-P MCNP model



Comparing simulated photon background to measured 

signals with shielding in place
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❖ Red - without shielding

 N170524, N170813

❖ Blue - with shielding

 N170821, N170827, N170831

❖ Gray - MCNP simulation



T
ra

n
s
m

is
s
io

n
 (

%
)

Neutron Energy (MeV)

IAEA FENDL Consultants Meeting 24LLNL-PRES-2005932

We need to extend the nTOF diagnostics to 10x higher 

D-T yields, and maintain linearity

• One approach is to add physical  material in the 

nTOF LOS’s to reduce D-T neutron signals by 10x

• Must maintain measurements of the 4.4 MeV 

gammas (from target TMP) for timing/velocity 

inference and preserve DSR, D-D, and other 

measurements

• High-Z materials attenuate gammas and low-Z 

materials have “bumpy” cross-sections that 

impact D-D and DSR neutrons

• Silver appears to be a viable choice with smooth 

neutron cross-section, and acceptable 
attenuation of 1-20 neutrons, as well reasonable 

attenuation of the 4.4 MeV carbon gammas

• Better evaluation of the silver cross sections will 

be helpful

Attenuating the neutron beam lowers 

both signal & background

Signal & background 
are reduced by the 
same amount

Neutron beam 
attenuated

Signal:
Light

Background:
(n, n’) 𝛾
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Limited experimental measurements of total neutron 

cross-section from 0.5-30 MeV for 107Ag and 109Ag

• We desire better evaluated total cross-

section measurements

— 107Ag: 4.5-30 MeV

— 109Ag: 0.5-30 MeV

• There are subtle differences in cross 

sections for different evaluations

• We need to understand the relative 

signal differences at different energies

Total Neutron Cross Section: 107Ag

Total Neutron Cross Section: 109Ag
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Locations of the real-time nuclear activation detector 

(RTNAD) in the NIF chamber. 
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Using real-time nuclear activation detectors for 

measuring neutron yields

• The RTNADs use a Zr cap as an activation material for inferring D-T neutron yields 

via 90Z(n,2n)89Zr

• The Zr cap surrounds a LaBr3 scintillator, which is sensitive to gammas emitted 

from both the cap and the scintillator itself

• The LaBr3 scintillators can be activated by lower energy neutrons, which is 

problematic for D-T neutron measurements, as it creates a source of background 

that can lead to high dead times immediately after the shot

• The fact that 2.5 MeV neutrons can activate the scintillator means the activation can 

be used to infer D-D neutron yields via the two reactions; 79Br(n,n’)79mBr and 
81Br(n,)82Br

• More certain cross sections would enable more accurate understanding of 
sensitivities to the spectra
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Good agreement between ENDF and measured cross  

sections (EXFOR) for 90Zr (n,2n) reaction
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Discrepancies between ENDF and measurements are 

observed in the 79Br inelastic scattering reaction

B. Lahmann, et al., Rev. Sci. Instrum. 96, 033506 (2025)

• Inelastic scattering reaction with 79Br 

has a threshold-like behavior making it 

a good candidate for measuring D-D 

neutron yields

• The decreasing cross section with 

decreasing energy makes the reaction 
less sensitive to D-D neutrons that lose 

energy through scattering

• The low-energy threshold behavior 

enhances the ability of the reaction to 

determine the angular distribution of 

the 2.5 MeV neutrons from the ICF 

implosion

Cross section as a function of energy for 

an inelastic scattering reaction with 79Br
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Neutron reaction with 81Br is not suitable for inferring 

D-D neutron yield

• The neutron absorption reaction with 
81Br rapidly increases with decreasing 

neutron energy 

• While it is still possible to use this 

reaction to infer D-D neutron yield, it 

is a less ideal candidate as it is more 
sensitive to scattered neutrons and 

can compromise accurate 

determination of the neutron source 

distribution

Cross section as a function of energy for 

a neutron absorption with 81Br
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Inelastic scattering of neutrons (E > 6 MeV) is 

important for development of gamma detectors

• 14 MeV neutrons inelastically 

scattering on relevant elements

— C, Al, Si, W, etc.

— Limited experimental data 

available

— How accurate are the current 

libraries?

F. Maekawa & Y. Oyama, Nuclear Science and Engineering 123, 272 (1996)
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List of reactions important for characterization of 

measured neutron spectrum

N. Quartemont et al., Nuclear Inst. and Methods in Phys. Research, A 1016, (2021)
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Reaction-in-flight (RIF) neutrons as a diagnostic for 

hydrodynamical mixing in double shell ICF capsules

• The neutron-induced RIF process involves a 14 MeV neutron elastically 

scattering a D or T ion in the plasma

• The scattered ion undergoes a D-T reaction and RIF neutrons can be 

produced with energies up to 30 MeV

• RIF spectra are several orders of magnitude lower than the 14 MeV neutron 

signal 

• RIF spectra are measured at NIF by nToF or by activation of foils made of 

materials with energy thresholds > 14 MeV

• 169Tm(n,3n)167Tm (Eth = 15 MeV) and 209Bi(n,4n)206Bi (Eth = 22.5 MeV) reactions, 

are used to measure the RIF spectrum
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