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MELCOR for Advanced Nuclear Energy Technologies ELCOR

Fully integrated, engineering-level code

eThermal-hydraulic response of reactor coolant system, reactor cavity, rector enclosures, and auxiliary
buildings

eCore heat-up, degradation and relocation

eCore-concrete interaction

eFlammable gas production, transport and combustion

eFission product release and transport behavior

Level of physics modeling consistent with

eState-of-knowledge
eNecessity to capture global plant response
eReduced-order and correlation-based modeling

Traditional application

*Models constructed by user from basic components (control volumes, flow paths and
heat structures)

eDemonstrated adaptability to range of reactor designs — LWR, LWR-SMR, FHR, HPR,
HTGR, MSR, SFR, ATR, VVER, SFP...




Molten Salt Reactor Modeling

* MELCOR Molten Salt Reactor source term
modeling strategies revolve around3
primary areas:

1. Control

Cool
2. Cool Tl Lo . Generalized /=&
3. Contain o By Contain W gos) cvH, Hs 2=
* MELCOR capabilities have been tested =~ “SEE&s ) ARGCECHIEIEE i
. species,
using models for the Molten Salt Research HranSporT
Experiment (MSRE) and Molten Salt and retention

Breeder Reactor



Control Neutrons

Fuel point kinetics — Derived from
standard PRKEs and solved similarly

— Feedback models

* User-specified external input
* Doppler
* Fuel and moderator density

* Flow reactivity feedback effects integrated into
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MELCOR
 Transmutation — Depletion Module

(under development)

— Treats transmutation of the initial
radionuclide inventory (radioactive decay and
neutron interactions) during severe accidents
including mass transfer between radionuclide
classes

dN

= (A7 + ApP)N(D) + S(t)
N (t): vector of isotope number densities
A,: radioactive decay transition matrix

= Guo Code

Ad,: neutron interaction transition matrix

e \ISRE Data

&d: scalar neutron flux

MELCOR

S(t): eternal isotope source
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Keep the Reactor Cool

* Generalized EOS — Equations of state for multiple
working fluids are presently available in MELCOR
including water, sodium, and FLiBe.

— MELEQS can generate equations of state for any fluid with the
necessary data

* Thermal hydraulics — CVH/FL Packages

— The CVH package defines control volumes (CV)
— The FL package defines flow paths (FL)

* Heat Transfer — HS/CVH/COR Packages

— The HS package defines heat structures (HS) that model
radiative and conductive heat losses

— The CVH package manages convective heat losses

— The COR package controls heat losses of heat bearing and other
core structures
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Contain Radionuclide Release
* Radionuclide Species — DCH/RN1

Default 17 representative radionuclide
species/elements (RN classes)

Species categorized by similar transport and retention
mechanisms

Each species represents a set of elements and the
corresponding collapsed isotopic masses

Does not currently model RN class masses at the
isotopic level or mass transfer between RN classes

Users have the ability to redefine/add RN classes

* Radionuclide Transport and Retention

Transport and retention of RN classes modeled by
various physiochemical processes

New MELCOR structure allows rapid implementation
and benchmarking for models
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RN Package Generalized Representation Degrees of

Freedom
Generalize RN package for species transport

modeling

* RN package initially intended to model
radionuclide transport

* Has evolved with MELCOR to generally

characterize transport of any trace species

Hazardous Trace

Species "State"

MELCOR

r

Generalized mathematical
representation in software

~\

Degrees of freedom designed to
be expanded
J

Species have number of possible
degrees of freedom

 Chemical state (Speciation)

* Nuclear State (Isotope)

* Phase/Location

I
Nuclear State Chemical State Hosting Volume

Free to transport
to other hosting
volumes
Trapped within
hosting volume

L Aerosol particle
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MELCOR's New Generalized Reactor Architecture

Integration of
Dynamical
N CLERYEELES

m
MELCOR

MELCOR modernization established a new System
Evaluation

software platform

Rapid capability implementation through
physics/chemistry generalizations

* Generalized means re-using physics equations
but changing system state variables

* Numerics separated from physics

1 \
Parameter Closure
Database - i ' .




RN Package Generalized Dynamics MELCOR

Transmutation/Decay
Species transport is formulated as mass fluxes
Interfacial Transport: Transport of species

between “volumes” Chemical Reactions
Aerosol Dynamics: Transformation of species
within volumes associated with vapor and aerosol Initial

dynamics Species
“State”

|[

New

Species
“State”

Spatial Transport

Nuclear Processing: Transformation of species
within hosting volumes due to nuclear
transmutation and decay Aerosol Dynamics

Chemical Processes: Transformation of species
within hosting volumes due to chemical reactions
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ORIGEN-MELCOR Integration for Radionuclide Decay

ORIGEN provides isotopic analysis and computation of radionuclide transmutation, fission, and decay

ORIGEN — Isotopes on Materials

ORIGEN Post-Process

* Isotopes -> elements
* Mass

* Decay heat

New Elementwise
Inventory on
Materials/Regions

Isotopics Solve
OR
Interpolation

ORIGEN Pre-Process
* Material transfers
* Move decay time

Old Elementwise
Inventory on
Materials/Regions

COR CVH HS FLT @ Gap Release
Region(s) Region(s) Region(s) Region(s) | (2) Fuel Release
MELCOR Pre-Process @ Deposition
COR O cv ® HS ) @ Resuspension
@—> Filters
Cellls P8|<A | Sulrfs ® Filtering

MELCOR - Elements/Classes on Regions
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ORIGEN-MELCOR Integration Updates Species
Concentrations

* Primary system radionuclides circulate
through the core and exposed to neutron
fission environment until shutdown

e Corrosion products and noble metals deposit
and decay with transmutation to other
elements and possibly change in solubility or
phase

Waste Streams

Off gas system

e Off-gas hold-up systems designed to decay Xe
& Kr but also include transmutation to other /
elements and possibly change in phase
(i.e., gas—> aerosol)

Excess Salt Tank

Radionuclide form (aerosol or gas) and nuclide

MELCOR

’
Core Fuel Salt

Core

ORIGEN/MELCOR integration allows independent
tracking, decay, and transmutation of nuclides in
multiple locations and their impact on radionuclide
transport and the source term

Feed

Feed Tank

decay impact the source term and health [ORNL/SCALE MSBR drawing]

consequences




MELCOR's MSR Chemistry SCOPE MELCOR

* MELCOR models chemistry in COR, EOS (fluid) and in RN packages

» “Like” species are grouped to reduce computational time (e.g. Rb and Cs)

* Chemical reactions considered if equilibrium constant is O(10°-10°s)

Molten Salt Thermodynamic Database helps to model reactor’s chemical speciation
and create fluid files

Can define a chemical reaction model in RN if not in MSTDB

Models events:
* Halogen potential control
* Environmental contamination
* Reactor Refueling
 Salt Spill



Assume Radionuclide Masses Minimally Affect Bulk

Salt Thermochemical Properties

Carrier and fuel salt mass is thousands of kgs while radionuclides (RNs)
will be a few kgs

RNs will quickly form products related to phase speciation, having little
affect on bulk properties

RN species will be driven largely by temperature, not mass changes

RNs in salt can be treated in system with classical mass-transport
equations (frozen chemistry)

MELCOR

Salt Liquid

Salt Liquid

LiF + LiCsF,

0.2

1% CsF mol frac with LiF

Report: “Investigation of Frozen Chemistry for Molten Salt Reactors (MSRs)” SAND-2024-13136



Chemical Databases and Gibbs Energy Solvers can

model Molten Salt Properties

The Molten Salt Thermochemical Database (MSTDB-TC) contains fitted
Gibbs energy functions for salt systems

* Thermochimica uses databases, like MSTDB-TC, to model
thermochemical properties (equilibrium speciation, melting point,
speciation...)

* Thermochemical properties of multiple molten salt compositions can be
modeled (limited by database systems)

e Common fluoride and chloride carrier, fuel and fission product systems
available; iodine increasing

MSTDB-TC and Thermochimica can be used to probe MSR chemistry
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Thermochemica + MSTDB-TC Allow Investigation of O coR
how Reactor Chemistry affects Mass Transfer =

1200 T T T v 0.8

. . . 1100 I E
* MSR related topics that can be investigated are: 1000 _ e
&) | []%¢ 3
* Fission product speciation for different reactor e oo | | os &
operations 8 700 | g: %
* Fuel cycle operation design ol i
* Corrosion control :gg ; - 2-1 §
* Parameterize mass transport coefficients in MELCOR 0 10 200 00 40 50
CsBeF; Pressure in MSRE 500 Days After Shutdown
* Note: MSTDB-TC contains finite salt systems aSBR-Slart —  MSBR.FP - MSREFP —
(e.g., Pb, Ti, S); use wisely
g 1200 |
. % 800 |
 New classes in RN can be created for off gas &
modeling from Thermochimica results L 400 |
Use Thermochimica + MSTDB-TC to fit parameters, such as Antoine 0 a0 600 800 1000 1200
coefficients, RN transport Temperature (C)

UF, Pressure in Different Systems



MELCOR Demonstrations of MS SBB MELCOR

T @
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Molten Salt Reactor Experiment i
Casey Wagner, SAND2022-12146PE (2022) e ’]Molten Salt Breeder Reactor

Edward Duchnowski, ML24192A127 (2024)




MELCOR MSBR Nodallzatlon

e Off-gas, drain tank, and
primary loop in respective
containment

* Drain tank cell and reactor
cell connected through
freeze valve cell

e Essentially maintain
equivalent
environments during
steady state operation

1 OFF-GAS
1 CELL

Off—Gas CeII

Drain Tank Cell

Reactor Cell

DRAIN L
(6-in.

FREEZE VALVE CELL

WASTE STORAGE CELL




SCALE and Thermochimica Results Used for MELCOR

Vapor Pressure of Species
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Emergency Drain: BeF, and UF, Distribution

BeF, Within Drain Tank

Temperature (°C)

Small amounts of BeF, and UF,
continuously released

Release rates vary as function of fuel
salt temperature

Airborne species condense back into
pool and deposit on cool drain tank
wall
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Emergency Drain: Radioactive Decav In Off-Gas

* Noble gases lumped into ‘Xe’ class

« Common methodology to describe gaseous
fission products

* Coupling of SCALE/ORIGEN with MELCOR
allows for investigation of specific elements

e Can track the transport, production, and decay
of isotopes such as xenon-135 within the ‘Xe’

class
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Drain Tank Leak Accident MELCoR

e Leak in bottom of drain tank
* Allows for all liquid to drain into drain tank cell
* Liquid no longer cooled by drain tank heat removal system
* Passive heat removal from drain tank cell floor and walls
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Drain Tank Leak Accident

MELCOR

Vapor Pressure of Species

* Higher liquid temperatures due to insufficient cooling, Lot A BeFs L )
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MELCOR Chemistry Road Map MELCOR

* Particle Deposition
* Solids (Noble metals, corrosion products, oxides)
* Aerosols

* EOS thermophysical property sensitivity studies
* Viscosity
* Density
* Heat Capacity

e Bubble formation and dynamics (Daniel Orea, Oak Ridge National Lab)

* Bubble size/shape
 Diffusion through liquids and solids, such as Xe into graphite
e Bursting transfer from liquid to vapor phases

* MSR/Super-Critical CO, Heat exchanger failure



Summary MELCOR

MELCOR MSR modeling centers around “Control, Cool and Contain” ethos

New Generalized MELCOR architecture allows for rapid implementation and evaluation for physical
models

SCALE integration into MELCOR allows for evaluation of radionuclide decay during system analysis

Chemistry is informed through SCALE radionuclide calculations and MSTDB-TC calculations

Demonstrations have been carried out for MSRE and MSBR designs

MELCOR is being continuously developed to add important chemistry/physics models and to reduce
uncertainties in MSR modeling.
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