EXPLORING SPENT SALT TREATMENT OPTIONS BASED ON LA HAGUE HYDROMETALLURGICAL PROCESSES

Joint IAEA-NEA-EC/JRC Workshop on the Taxonomy and Related Terminology of Fuel Cycles for Molten Salt Reactors, Vienna, 3-7 November 2025

I. Morlaes, E. Capelli, O. Drouvot, B. Morel

© ORANO 2025 - All rights reserved

- 1 Context and interest in MSR
- 2 La Hague Hydrometallurgical Process and Industrial Experience
- MSR Fuel Cycle Scenarios based on La Hague Processes
 - Front-End side
 - Back-End side

1 A proven expertise in the **NUCLEAR FUEL CYCLE**

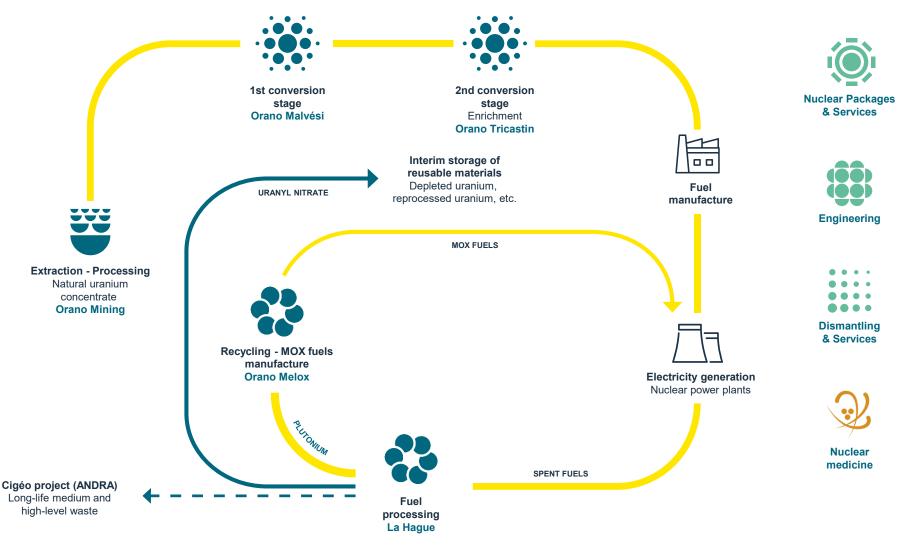
A major player in the nuclear fuel cycle, Orano transforms nuclear materials to offer its customers high value-added products and services.

Its industrial platforms are recognized for their cutting-edge technologies and processes.

In the top 3

worldwide in its core activities

€5.9 Bn


in revenue (2024)

€35.9 Bn

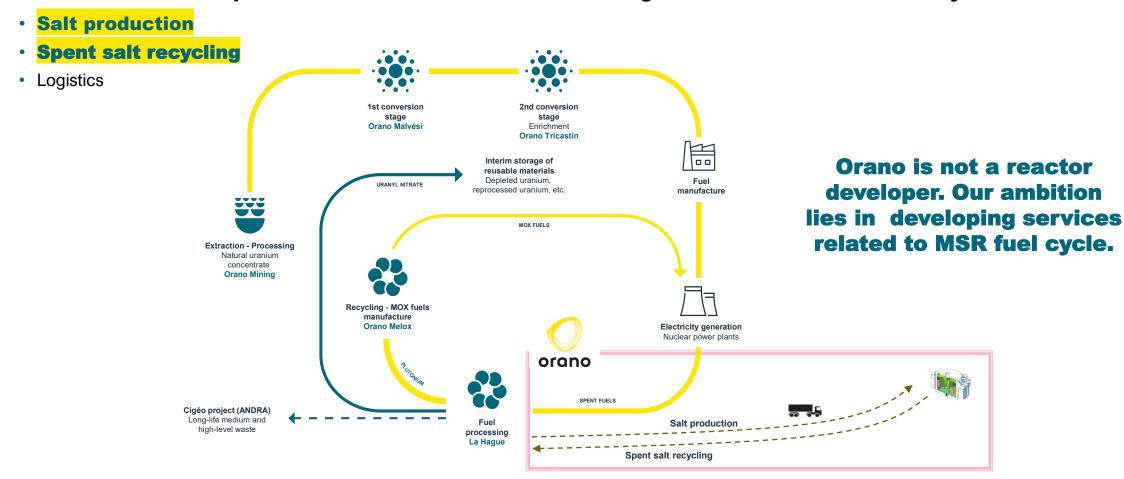
in order backlog (or almost 7 years of revenue) (2024)

17.500

Employees (2024)

Seizing the potential of MOLTEN SALT REACTORS...

- * Although research fields and gaps in knowledge remain extensive, MSR is a promising and rapid evolving technology.
 - From a technological point of view, MSRs show significant advantages in terms of intrinsic safety, simplified fuel fabrication and FP management.
 - There is a potential for combining multi-recycling options with chloride MSR, offering an even more integrated and responsible management of spent nuclear fuel and producing valuable isotopes for other applications.
 - Reducing the volume and the radiotoxicity of high-level waste is a strategic issue for the nuclear industry and MSRs can contribute to this objective through MA conversion

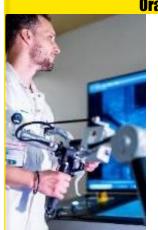

- Reduction in volume of waste
- Reduction of radiotoxicity and lifetime of HL waste
- Preserving resources
- Low-carbon production

- Operation in Pu or Pu+MA cycle, i.e., without Uranium → harder neutronic spectrum and maximized consumption of Pu/MA
- No fabrication of solid fuel (complex at industrial scale with MA)
- No cladding limitation to burn up, so the actinides remain in the core until they fission and are thus totally "burned"
- No degradation by MA of counter-reaction factors → possibility to increase the MA content in the core (vs. LMFR with solid fuels)

... and evaluating the impact of Fast chloride MSRs on the current and future nuclear fuel cycle

Since 2019, Orano has been actively exploring the potential of fast chloride MSRs actinide converters to enhance the value of the current Spent Nuclear Fuel reprocessing solutions proposed by the La Hague plant...

... via assessment of potential services related to salts throughout the entire nuclear fuel cycle.



La Hague Hydrometallurgical Process

Decades of Industrial Experience

Orano La Hague

The La Hague site processes nuclear fuels to recover and recycle energy materials and produce new low-carbon electricity.

Orano's recycling activities

Generate over 10% of nuclear electricity in France **55 + vears** of industrial experience

~41,000 tHM of French and Foreign SNF reprocessed in La Hague over the past 55+ years

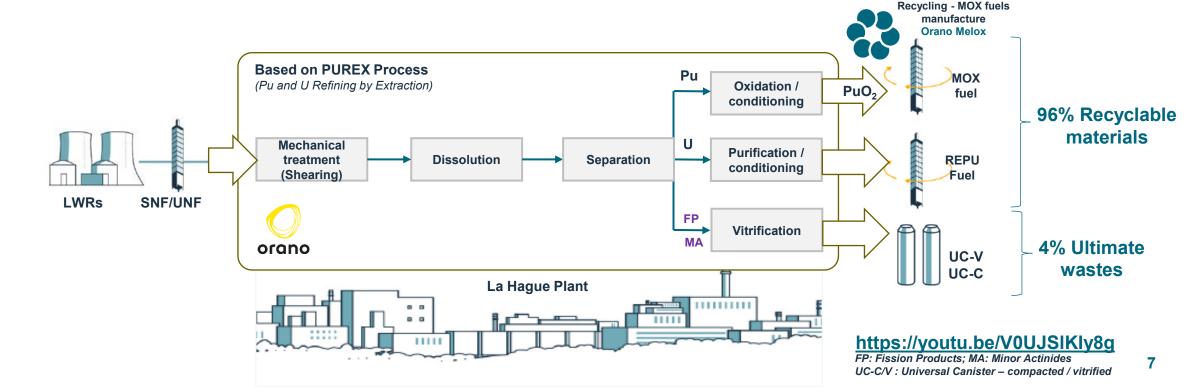
French processing-recycling strategy confirmed by the Nuclear Policy Council in 2024

Launch of two key strategic projects

- **Sustainability and resilience program extending the life of the** existing La Hague and Melox plants beyond 2040.
- *Renewal of the fuel reprocessing plant and the MOx fuel manufacturing plant at La Hague site : a unique set of industrial assets operating through to 2120.

MSR Fuel Cycle Scenarios

based on La Hague Processes


Leveraging synergies between MSR technology and La Hague plant can help build an industrial and risk-optimized molten salt fuel cycle

Chloride fuel salt cycle

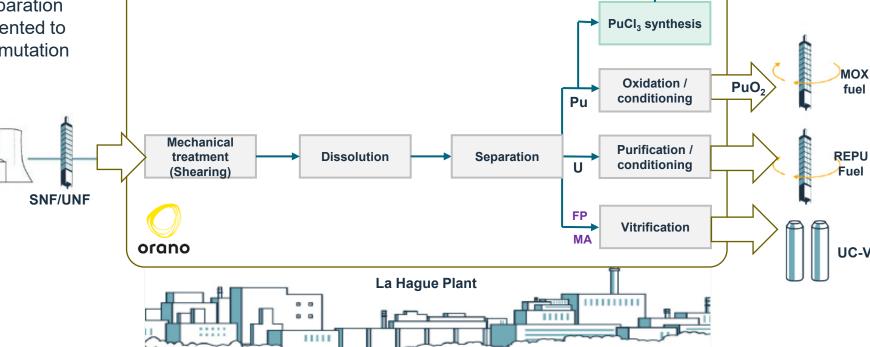
- Soluble in water
- Compatible with La Hague hydrometallurgical processes

Synergies on the Front-End side

Salt production with fissile material recovered from LWR SNF treatment

PuCl₃ production

• Using Pu separation process and output to synthetize PuCl3 from Pu oxalate


Blending with other primary salts (NaCl, UCl₃,...) and salt purification

Same strategy with MA in the longer term

 Provided a MA separation process is implemented to allow for MA transmutation in fast MSRs

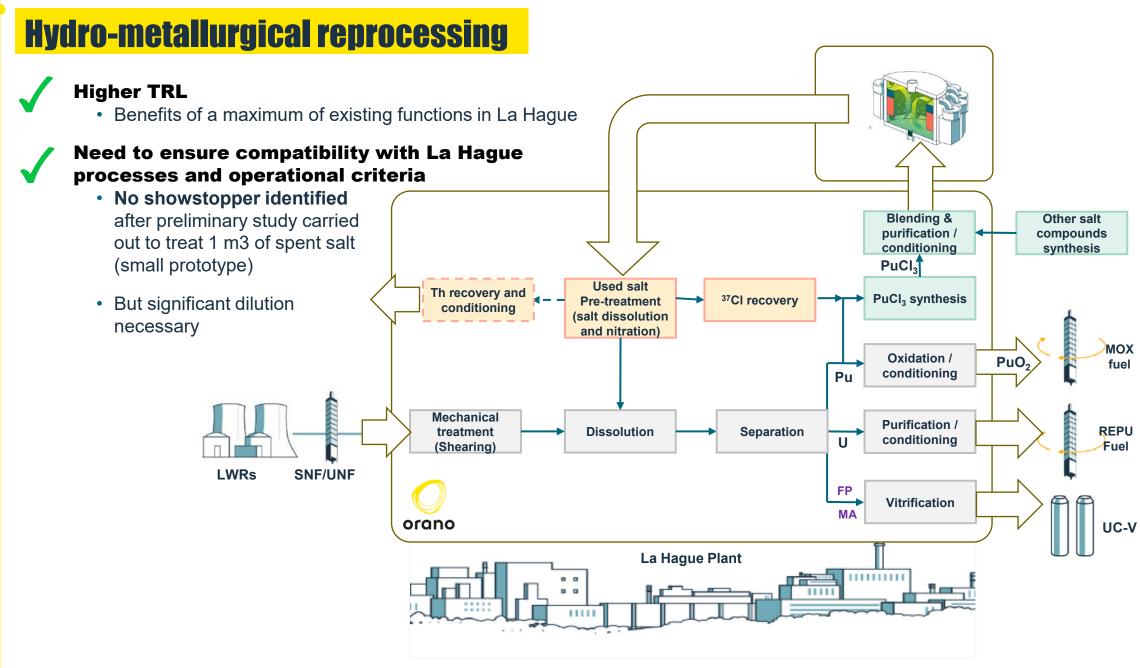
LWRs

Blending &

purification /

conditioning

PuCl₃


Other salt

compounds

synthesis

Synergies on the Back-End side

Synergies in the Back-End side **Pyro-metallurgical reprocessing Promising alternative: offer** AnClx + ε LnClx **Pyroprocesing Direct** flexibility to be implemented (extraction in regeneration / conditioning? on reactor site several steps) adjustment ε PuCl3.. Actinides directly recycled on LnClx, ε AnClx site → less volume of spent salt (only waste) to be transported to Blending & Other salt La Hague purification / compounds conditioning synthesis Minimal cycle time → optimizes PuCl₃ valorization of actinides **Used salt** PuCl₃ synthesis 37CI recovery **Pre-treatment** (nitration) Operates at higher temperature → minimizes temporary storage MOX Oxidation / PuO fuel for cooling conditioning Mechanical Purification / **REPU** treatment **Dissolution** Separation conditioning U (Shearing) Fuel **LWRs** SNF/UNF **Lower TRL** Vitrification Need to develop and scale up orano the most promising processes La Hague Plant Do not completely eliminate the need for remaining waste treatment / hydro-processing

Fuel salt production and the treatment of spent salt are aligned with Orano's core business: Orano has been actively exploring the potential of fast CI MSR and performing R&D on the fuel salt cycle since 2019

Chloride salt synthesis (with fissile material recovered from LWR SNF treatment) and spent fuel salt treatment can benefit from decades of industrial experience with La Hague SNF reprocessing activities: A key contribution to minimize time to market, risks and investment costs

Preliminary studies and R&D carried out in MIMOSA and ISAC collaborative projects outline the feasibility and potential industrial implementation of each of the hydro / pyro processing schemes in synergy with the La Hague plant

Hydrometallurgical treatment is more mature than pyrometallurgical treatment, and could become operational in a nearer future, offering new perspectives in synergy with La Hague process never explored in the past

A MSR fuel cycle taxonomy should take into account these new potential approaches

Giving nuclear energy its full value