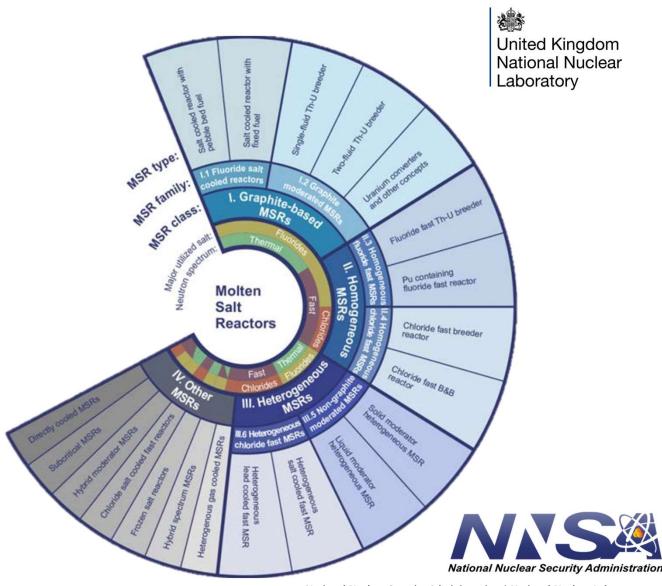


U.S.-UK Bilateral Cooperation on a Safeguards Analysis for a Nominal Molten Salt Reactor Design

Mike Edmondson | UK National Nuclear Laboratory


4 November 2025

Our Motivations

- MSR designs vary immensely and evolve rapidly.
- Novel designs may require novel approaches.
- "Safeguards by Design" principles are a necessity.
- "Engineer connection, embrace discomfort, execute imperfectly"

TECHNICAL REPORTS SERIES No. 489 STATUS OF MOLTEN SALT REACTOR TECHNOLOGY INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2023

Our Technical Team

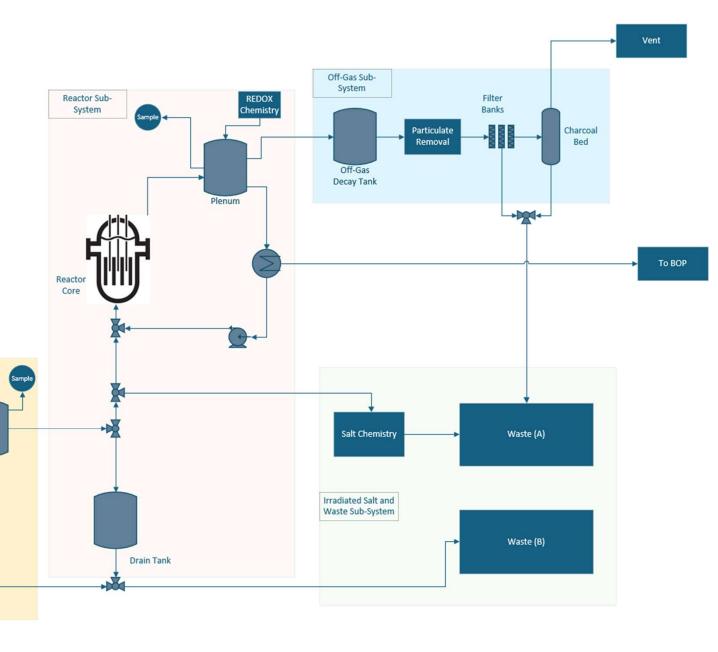
- UK National Nuclear Laboratory
 - Seddon Atkinson
 - Mat Budsworth
 - Mike Edmondson
- Idaho National Laboratory
 - Ammon Williams
- Oak Ridge National Laboratory
 - Hunter Andrews
 - Karen Hogue
 - Logan Scott
- Pacific Northwest National Laboratory
 - Rob Marek
 - Patricia Paviet
- Savannah River National Laboratory
 - Anthony Belian

Our Methodology

System-level Identify Sub-system safeguards essential safeguards Define the approach equipment analyses nominal MSR Sub-system Diversion pathways MBAs/KMPs Nominal components* characteristics* Misuse scenarios **Process monitoring** Shared equipment and Nuclear material flow Other indicators material flow streams diagram *Including Define sub-systems* Sub-system commonly Operational parameters connectivity Technology gaps Identify material flow agreed terminology boundaries Concealment Maintenance schedules Measurement gaps Identify required Integrate sub-Define key **Gap Analysis** sub-systems assumptions system analyses

Nominal MSR Design

- Liquid-fueled with LEU
- Fluoride-compounded salt


Feed Sub-System

Salt Chemistry

Fresh Fuel Storage

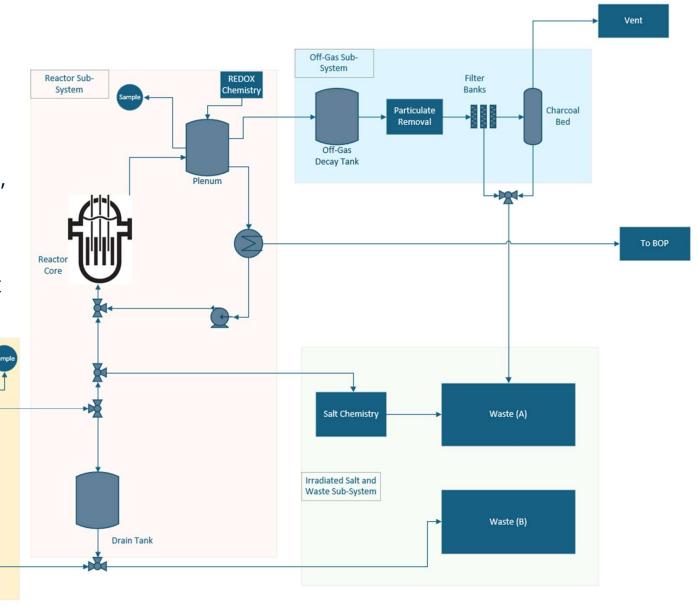
Intermediate

- Thermal spectrum with a graphite moderator
- Single, primary loop

Nominal MSR Design

Idealized flow of material (no material loss) except during safeguards analysis "Life cycle" of the reactor is 8 years, with a scheduled shutdown at 4

years for major maintenance Cover gas and off-gas is "once through", with no gas recirculation No online chemical fission product


removal

Feed Sub-System

Salt Chemistry

Fresh Fuel Storage

Intermediate

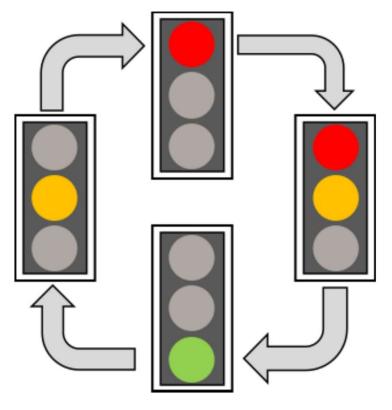
MSR Safeguards Approach Workshop

Oak Ridge National Laboratory | 24-26 June 2025

Diversion Pathways and Misuse Scenarios

	Diversion Pathways	Misuse Scenarios
Fresh Feed	24	17
Primary Salt Circuit	20	23
Reactor	34	28
Irradiated Salt and Waste	24	22
Off-Gas	13	13
Total	115	106

"RAG" Analysis



Classic "stoplight" analysis with three criteria

- Level of effort
- Quantity diverted
- Time of diversion

Three categories

- Red: most concerning for safeguards
- Amber: somewhat concerning for safeguards
- Green: least concerning for safeguards

"RAG" Analysis Criteria

		Quantity	Time to Complete	Level of Effort*
	Red	• 1 SQ of Pu, ²³³ U, or ²³⁵ U	• Less than one week	 Low radiation materials No specialized equipment that is not already at the facility, Technical knowledge within normal operations Material obtained without raising suspicion
	Amber	 Between 1 SQ and "tens" of g of Pu or ²³³U Between 1 SQ and "couple" of kg of ²³⁵U 	Between one week and one year	One or two of the "Level of Effort" factors
	Green	 "tens" of g of Pu or ²³³U "couple" of kg of ²³⁵U 	Greater than one year	Three or more of the "Level of Effort" factors

Level of Effort Factors

- Material with high radiation levels
- Requires specialized equipment that is not already at the facility
- Excessive costs to complete
- Irrecoverable damage to systems or existing equipment required for operations
- Requires more than 10 individuals to execute
- Requires over 100 man-hours to plan or execute

Next Steps for Collaboration

October-December

- Sub-system integration
- > Taxonomy and terminology
- System vulnerability analysis

January-March

- System-level safeguards approach (KMPs, MBAs, I&C)
- > Gap analysis

April-June

- > Review and refine
- Internal presentation for feedback

July-September

> Open for public comment

Thank You

United Kingdom National Nuclear Laboratory

5th Floor, Chadwick House Warrington Road, Birchwood Park Warrington WA3 6AE **T.** +44 (0) 1925 933 744

E. customers@uknnl.com

www.nnl.co.uk

