

Development of Nuclear Fuel Cycle Terminology Standards in ISO

Michael J. Brisson

SRNL-STI-2025-00514, Rev. 1 - ROI #65112 - RSM #10562

Joint IAEA-NEA-EC/JRC Workshop on the Taxonomy and Related Terminology of Fuel Cycles for Molten Salt Reactors

Vienna, Austria, 4 November 2025

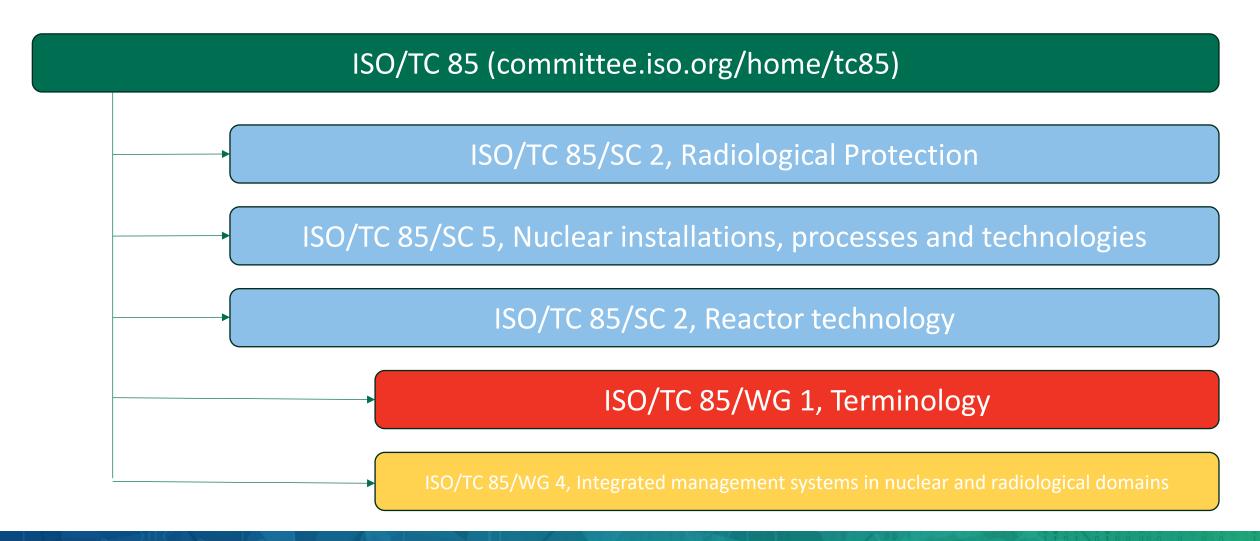
Experience Summary

- 37 years at Savannah River National Laboratory (U.S. Department of Energy)
- Member of ISO working group on terminology in the nuclear fuel cycle since 2016
- I am not representing or speaking for ISO
- I am sharing my experience as a subject matter expert (not a terminologist) in terminology development for the nuclear fuel cycle in the ISO working group
- Views expressed are based on my experience, and are not necessarily the views of SRNL or DOE

Overview

- Introduction
- Selection and Organization (Taxonomy) of Terms
- Selection of Definitions
- Approval of ISO Standards

About ISO and ISO Vocabulary Documents


- Over 270 technical committees
 - Wide variety of industry sectors
- Most ISO committees have one or more documents to define key terms
 - ISO prefers to refer to "vocabulary" rather than "terminology" or "glossary" (Directives, Part 2, 11.5.2)
- ISO vocabulary documents serve purposes similar to:
 - IAEA Glossaries
 - IAEA Nuclear Energy Series NR-T-1.19, Terms for Describing Advanced Nuclear Power Plants

HARMONIZATION

- Those purposes are:
 - Harmonization (using the same vocabulary)
 - Achieve a common understanding of what terms mean

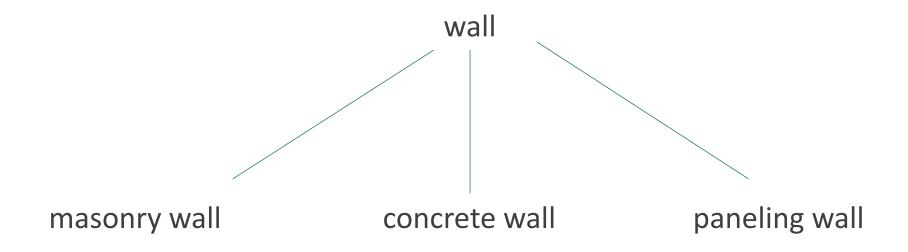
ISO/TC 85, Nuclear energy, nuclear technologies, and radiological protection

ISO 12749 Vocabulary Series

Document No.	Subject Area	Corresponding Group	Edition	Year Published	Revision Status
12749-1	General terminology	TC 85	1	2020	Revision in progress
12749-2	Radiological protection	SC 2	2	2022	
12749-3	Nuclear installations, processes and technologies	SC 5	2	2024	
12749-4	Dosimetry for radiation processing	TC 85/WG 4 (disbanded)	1	2015	
12749-5	Nuclear reactors	SC 6	1	2018	Revision being balloted
12749-6	Nuclear medicine	N/A	1	2020	

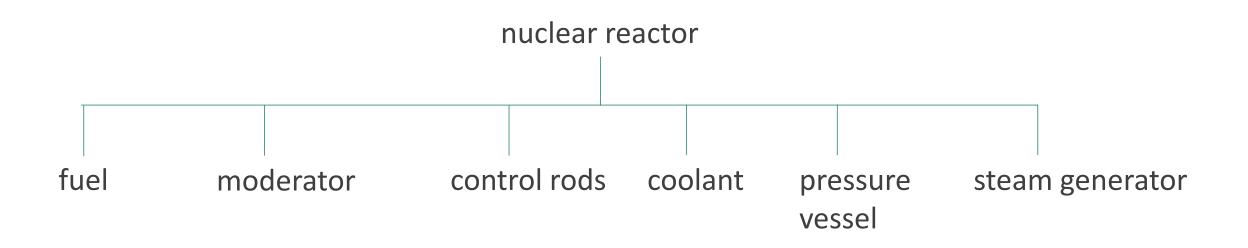
Selection of Terms

- Term selection is based on usage in standards in the given subcommittee or group
 - Terms used in more than one standard
 - Terms/definitions that need to be defined/harmonized for general understanding
 - Terms that are commonly used and understood (i.e., based on dictionary definitions) are not included
 - Example: In ISO 12749-5, "reactor" is not defined, but "nuclear reactor" is
- During development of ISO 12749-3:
 - Terminology section of each standard was reviewed
 - Terms considered important for harmonization and understanding of key concepts were selected
 - In the recent revision of ISO 12749-3, emphasis was placed on standards that had been published, or recently revised, since the first edition of 12749-3 (2015)
- ISO/TC 85/WG 1 has benefitted by having a mix of subject matter experts and terminologists


Organization of Terms: ISO 10241-1

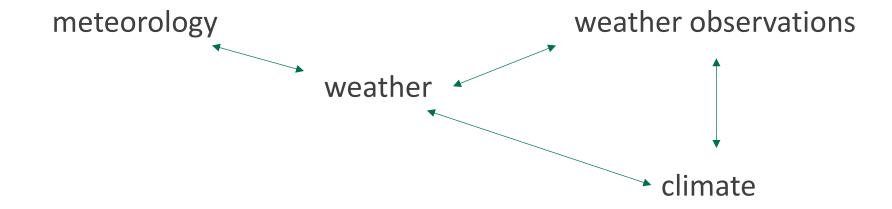
- Key principles (from ISO 10241-1:2011)
 - A concept is defined as a "unit of knowledge created by a unique combination of characteristics"
 - A concept is not necessarily bound to a particular language
 - Sets of concepts (called "concept systems" in ISO 10241-1) are structured based on how the concepts relate to one another
 - As much as possible, a single term should correspond to a single concept
- Arrangement of terms
 - Most preferred: systematic order (based on hierarchy of the concepts)
 - Least preferred: alphabetical order

Concept Diagrams


- Types of concept diagrams (from ISO 704:2022)
 - Generic
 - Partitive one concept represents the whole of something and the other concepts are parts of the whole
 - Associative
- ISO 12749 series uses all three of these types

Example Generic (Hierarchical) Concept Diagram

No arrows are used in this diagram. (For illustration purposes only.)


Example of Partitive Concept Diagram

No arrows are used in this diagram. (For illustration purposes only.)

Example of Associative Relation Diagram

- Most commonly used concept diagram
- Illustrate the relationship of concepts to each other within a concept system
- Lines with arrowheads at each end

Selection of Definitions

- In most cases, start with definition provided in the original standard where the term is used
 - If the same term is also defined in the IAEA Safety and Security Glossary, the definitions are compared with a goal of harmonization with IAEA definition when possible
 - ISO/TC 85/WG 1 has an IAEA liaison representative to help with this
- Modifications can be made for reasons such as:
 - For greater clarity
 - To conform to ISO style
 - Example: ISO definitions cannot start with an article (a, an, the)
 - Modifications must be clearly identified

ISO 12749-3 History

- First edition published in 2015
- ISO 12749-3:2015 (nuclear fuel cycle vocabulary) preceded first edition of ISO 12749-1 (general nuclear vocabulary, published in 2020)
- Some terms in ISO 12749-3:2015 were adopted into ISO 12749-1:2020, but with modifications
- Second edition of ISO 12749-3 (2024) adopted definitions in ISO 12749-1:2020

Approval of ISO Standards

- Prepared by cognizant working group (e.g., ISO/TC 85/WG 1)
- Reviewed and approved by participating members of ISO/TC 85
 - National standards bodies (such as ANSI in the USA or DIN in Germany)
 - Currently 26 participating members
 - An additional 22 observing members can review and comment, but do not approve or disapprove

Molten Salt Reactor in ISO

• ISO 12749-5:2018 defines "molten salt reactor":

"nuclear reactor where the fuel is a molten salt mixed with a carrier molten salt that acts as primary coolant

Note 1 to entry: Molten salt is typically uranium, plutonium and thorium fluorides. Carrier molten salt is typically lithium fluorides."

- ISO/DIS 12749-5 (currently being balloted) would remove this term
 - It is not used in any ISO publication per the ISO Online Browsing Platform

Questions?

