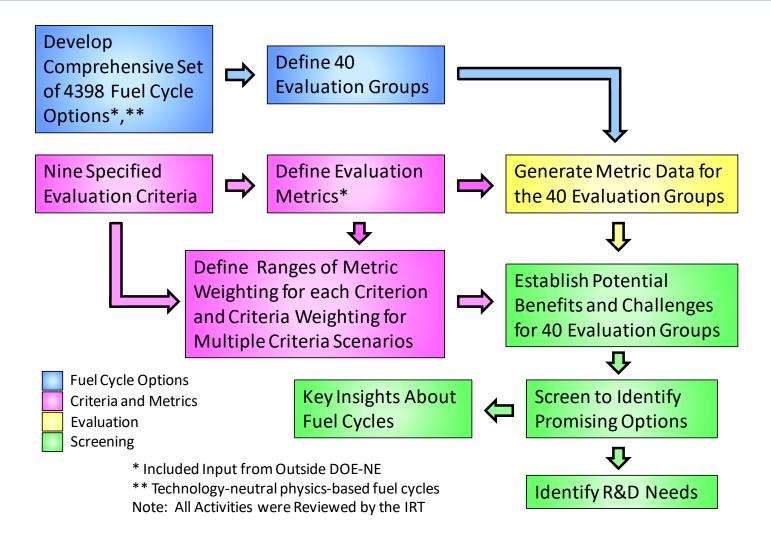
Introduction of the U.S. Nuclear Fuel Cycle Evaluation and Screening Study

Taek K. (TK) Kim
National Technical Director
Systems Analysis and Integration (SA&I) Campaign
Nov. 04, 2025

Background

- DOE chartered the Evaluation and Screening (E&S) Study in 2011 to strengthen the basis for DOE-NE R&D decisions
 - o Identify the potential for a nuclear fuel cycle to provide substantial improvements as compared to the current U.S. once-through fuel cycle, including both benefits and challenges for development
 - Identify promising fuel cycles with the potential to provide substantial improvements, not incremental or evolutionary changes
- DOE-NE specified the Evaluation Criteria
- The study was directed to:
 - Consider the complete nuclear fuel cycle system from mining to disposal
 - Develop a set of fuel cycles that is comprehensive with respect to potential fuel cycle performance
 - Develop appropriate evaluation metrics for the criteria
 - Explore the impacts of different criteria weighting factors that reflect the range of possible policy guidance and illustrate the effects of specific policy choices
- The Evaluation and Screening Team (EST) was established for the E&S study

Criteria and Evaluation Metrics


"Benefit" Criteria								
Nuclear Waste	Mass of SNF+HLW disposed per energy generated							
Management	Activity of SNF+HLW (@100 years) per energy generated							
	Activity of SNF+HLW (@100,000 years) per energy generated							
	Mass of DU+RU+RTh disposed per energy generated							
	Volume of LLW per energy generated							
Proliferation Risk	Material attractiveness – normal operating conditions							
Nuclear Material	Material attractiveness – normal operating conditions							
Security Risk	Activity of SNF+HLW (@10 years) per energy generated							
Safety	Challenges of addressing safety hazards							
	Safety of the deployed system							
Environmental	Land use per energy generated							
Impact	Water use per energy generated							
	Radiological exposure - total estimated worker dose per energy generated							
	Carbon emission - CO ₂ released per energy generated							
Resource Utilization	Natural Uranium required per energy generated							
	Natural Thorium required per energy generated							
	"Challenge" Criteria							
Development and	Development time							
Deployment Risk	Development cost							
	Deployment cost from prototypic validation to FOAK commercial							
	Compatibility with the existing infrastructure							
	Existence of regulations for the fuel cycle and familiarity with licensing							
	Existence of market incentives and/or barriers to commercial implementation of fuel cycle							
	processes							
Institutional Issues	Compatibility with the existing infrastructure							
	Existence of regulations for the fuel cycle and familiarity with licensing							
	Existence of market incentives and/or barriers to commercial implementation							
Financial Risk and	Levelized Cost of Electricity at Equilibrium							
Economics								

- High-level criteria are defined in DOE's Charter for E&S Study
- E&S Team developed evaluation metrics, coordinated with input from DOE, industry, universities, and others through collaborations, meetings, and iterations
- 26 metrics are grouped into "Benefit" and "Challenge" Criteria

Nov 04, 2025

Structure of E&S Study

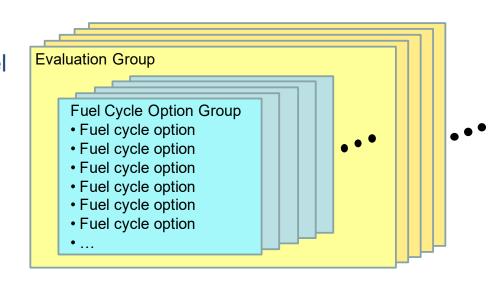
- EST identified 4398 fuel cycle options, which were reduced ~640 compressive fuel cycle option groups, and reduced them again into 40 Evaluation Groups (EGs)
- DOE-NE provided nine evaluation criteria
- EST defined 26 fuel cycle evaluation metrics
- EST calculated metric data of 40 Evaluation Groups (EGs)
- By comparing fuel cycle metrics of 40 EGs, EST identified promising fuel cycles

Terminology

Nuclear fuel cycle

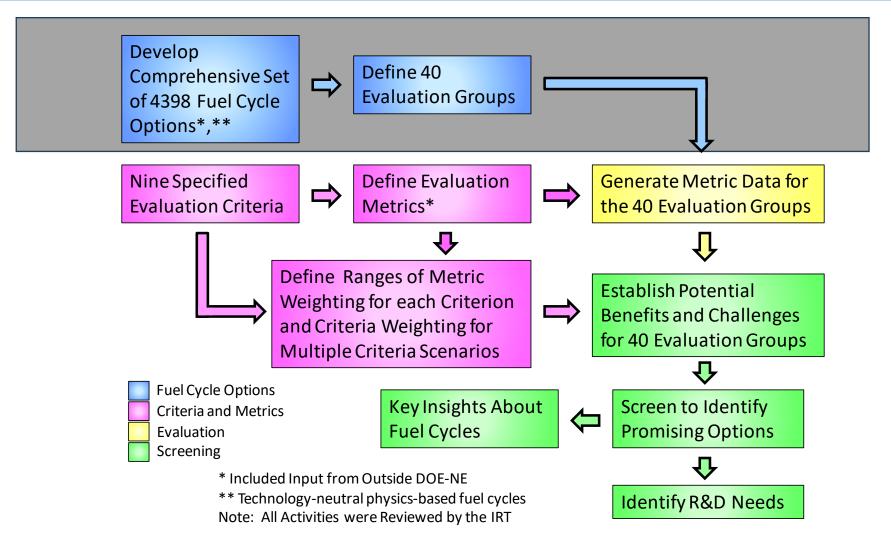
Complete nuclear energy systems from mining to disposal (e.g., once-through, recycle, limited-recycle)

Fuel cycle options (~4,400)


 A Nuclear Fuel Cycle with specific technologies for enrichment (if needed), fuel fabrication, reprocessing (if needed), and used fuel storage or disposal (e.g., once-through PWR with 5% LEU fuel).

Comprehensive fuel cycle option groups (~640)

 Collection of Nuclear Fuel Cycle Options at the functional level with similar fundamental physics principles and fuel cycle characteristics (e.g., once-through thermal critical reactors with enriched uranium fuel)


Evaluation groups (~40)

 Collection of Nuclear Fuel Cycle Groups based on <u>similarities</u> <u>in expected physics-based performance</u> (e.g., once-through with enriched uranium fuel and <u>similar uranium utilization</u>)

Evaluation Groups

Comprehensive Fuel Cycle Option Groups

- EST utilized discriminators for grouping ~4,400 fuel cycle options into comprehensive fuel cycle option groups.
 - 1. Recycling: Once-through vs. recycle
 - 2. Reactivity: Critical or sub-critical systems
 - 3. Neutron spectrum: Thermal, Intermediate, or Fast
 - 4. Feed fuel material: Uranium or Thorium
 - 5. Recycling Element: U, Pu, MA, TRU, or FP
 - 6. Need for enrichment: Yes or no (not considered assay range)
 - 7. Recycling Stages: a combination of critical and subcritical systems
- 638 comprehensive fuel cycle option groups
 - Once-through fuel cycle options: 30 -> 20
 - Limited recycling fuel cycle options: 336 -> 308
 - Continuous recycling fuel cycle options: 4032 -> 308

Evaluation Groups

- EST reduced the comprehensive fuel cycle option groups further, using two rules
 - o Rule 1: group fuel cycle option groups if the expected physics-based performance is similar
 - Ignore MA-only and FP-only recycles
 - Ignore U-only and Th-only recycling
 - Ignore the difference between homogeneous and heterogeneous recycling options
 - Combine intermediate spectrum systems into a fast spectrum
 - Delete sub-critical/sub-critical two (or multiple) stage systems
 - Rule 2: group the fuel cycle performance characteristics that are similar
 - Front-end fuel cycle guidance: Uranium (thorium) utilization range: <3%, 3-30%, > 30%
 - Back-end fuel cycle guidance: Recycling materials: SNF, SNF+HLW, HLW (Once-through, limited, continuous)
- 638 fuel cycle option groups were reduced to 40 groups, which is a sufficient groups for evaluation and defined as EGs

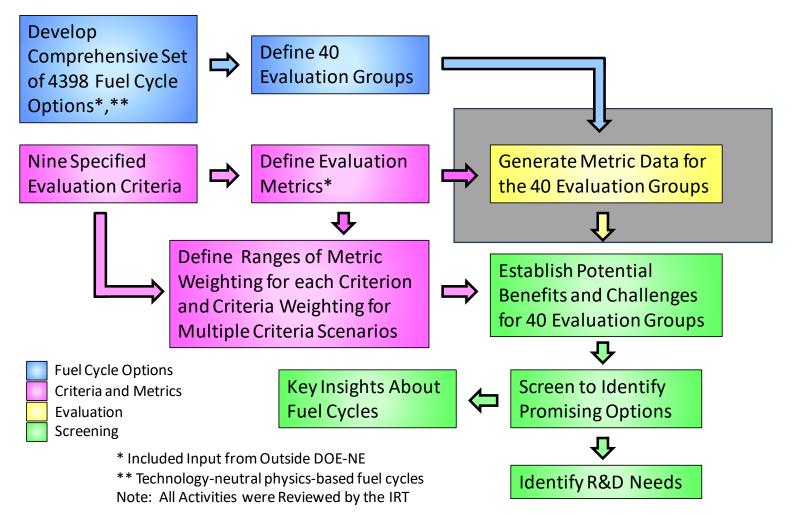
40 Evaluation Groups

Evaluation	Short Description Indicative of Fuel Cycles in the Evaluation Group					
Group	(Detailed Description of Each Evaluation Group is in Appendix B)					
Once-through Control of the Control						
EG01	Once-through using enriched-U fuel in thermal critical reactors					
EG02	Once-through using enriched-U fuel to high burnup in thermal or fast critical reactors					
EG03	Once-through using natural-U fuel in thermal critical reactors					
EG04	Once-through using natural-U fuel to very high burnup in fast critical reactors					
EG05	Once-through using enriched-U/Th fuel in thermal or fast critical reactors					
EG06	Once-through using Th fuel to very high burnup in thermal EDS					
EG07	Once-through using natural-U fuel to very high burnup in thermal or fast EDS					
EG08	Once-through using Th fuel to very high burnup in fast EDS					
Limited Re	Limited Recycle					
EG09	Limited recycle of U/TRU with new natural-U fuel to very high burnup in fast critical reactors					
EG10	Limited recycle of ²³³ U/Th with new Th fuel in fast and/or thermal critical reactors					
EG11	Limited recycle of ²³³ U/Th with new enriched-U/Th fuel in fast or thermal critical reactors					
EG12	Limited recycle of U/Pu with new natural-U fuel in fast and/or thermal critical reactors					
EG13	Limited recycle of U/Pu with new enriched-U fuel in thermal critical reactors					
EG14	Limited recycle of U/Pu with new natural-U fuel in both fast and thermal critical reactors					
EG15	Limited recycle of U/Pu with new enriched-U fuel in both fast and thermal critical reactors					
EG16	Limited recycle of U/Pu with new enriched-U fuel in thermal critical reactors and fast EDS					
EG17	Limited recycle of Pu/Th with new enriched-U/Th fuel in thermal critical reactors					
EG18	Limited recycle of ²³³ U/Th with new enriched-U/Th fuel in thermal critical reactors					

- EG02 high burnup thermal reactor with HALEU fuel
- EG13 MOX concepts considered by France and Japan
- **EG 23/24 Conventional recycling with fast reactors**

Continuo	ous Recycle
EG19	Continuous recycle of U/Pu with new natural-U fuel in thermal critical reactors
EG20	Continuous recycle of U/TRU with new natural-U fuel in thermal critical reactors
EG21	Continuous recycle of U/Pu with new enriched-U fuel in thermal critical reactors
EG22	Continuous recycle of U/TRU with new enriched-U fuel in thermal critical reactors
EG23	Continuous recycle of U/Pu with new natural-U fuel in fast critical reactors
EG24	Continuous recycle of U/TRU with new natural-U fuel in fast critical reactors
EG25	Continuous recycle of ²³³ U/Th with new enriched-U/Th fuel in thermal critical reactors
EG26	Continuous recycle of ²³³ U/Th with new Th fuel in thermal critical reactors
EG27	Continuous recycle of ²³³ U/Th with new enriched-U/Th fuel in fast critical reactors
EG28	Continuous recycle of ²³³ U/Th with new Th fuel in fast critical reactors
EG29	Continuous recycle of U/Pu with new natural-U fuel in both fast and thermal critical reactors
EG30	Continuous recycle of U/TRU with new natural-U fuel in both fast and thermal critical reactors
EG31	Continuous recycle of U/Pu with new enriched-U fuel in both fast and thermal critical reactors
EG32	Continuous recycle of U/TRU with new enriched-U fuel in both fast and thermal critical reactors
EG33	Continuous recycle of U/Pu with new natural-U fuel in both fast EDS and thermal critical reactors
EG34	Continuous recycle of U/TRU with new natural-U fuel in both fast EDS and thermal critical reactors
EG35	Continuous recycle of U/Pu with new enriched-U fuel in both thermal critical reactors and fast EDS
EG36	Continuous recycle of U/TRU with new enriched-U fuel in both thermal critical reactors and fast EDS
EG37	Continuous recycle of ²³³ U/Th with new enriched-U/Th fuel in both fast and thermal critical reactors
EG38	Continuous recycle of ²³³ U/Th with new Th fuel in both fast and thermal critical reactors
EG39	Continuous recycle of ²³³ U/Th with new enriched-U fuel in both thermal critical reactors and fast EDS
EG40	Continuous recycle of ²³³ U/Th with new Th fuel in fast EDS and thermal critical reactors

Example EGs


Table B9. Grouping and Analysis Examples for Once-Through Fuel Cycles.

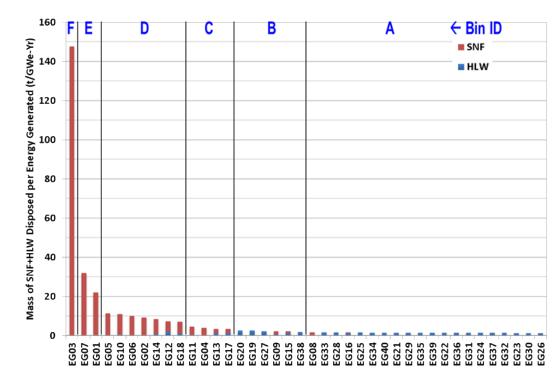
	Included Fuel Cycle	Key Characteristics			stics			
	Option Groups From Table B6	Reactivity	Spectrum	Feed material	Recycled element	Requires Enrich.	Characteristics	
Evaluation group EG01	OT-C-T-U-Y	Critical	Thermal	U	1	Yes	□ Natural U feed □ Enriched to <5 w/o U-235 □ Critical reactor □ Thermal spectrum □ Resource utilization ~0.6% Basis for comparison	
Analysis Example	Option description			Once-Through: PWR LEU base case (50 GWd/t burnup)				
For EG01				PWR([]; LEU;; discharged fuel			el (DF))	
	OT-C-T-U-Y	Critical	Thermal	U	-	Yes	□ Natural U feed □ Enrichments in range 5-20 w/o U-235	
	OT-C-F-U-Y	Critical	Fast	U	-	Yes	Critical reactors and EDS	
EG02	OT-S-T-U-Y	SubCrit.	Thermal	U	-	Yes	☐ Thermal or fast spectra	
	OT-S-F-U-Y	SubCrit.	Fast	U	-	Yes	☐ Resource utilization up to 3%	
Analysis Example	Option description			Once-Through: HTGR (graphite-moderated, He-cooled)				
For EG02	Reactor ([Startup];Driver; Blanket; Waste)			HTGR([]; LEU;; DF)				
Evaluation group EG03	OT-C-T-U-N	Critical	Thermal	U		No	 □ Natural U feed □ No Enrichment □ Critical reactors □ Thermal spectra □ Resource utilization up to 3% 	
Analysis Example For EG03	Option description			Once-Through: HWR with NU				
	Reactor ([Startup];Driver; Blanket; Waste)			HWR([]; NU;; DF)				

- Uranium utilization of Fuel cycle option groups in EG02 is less than 3% regardless of neutron spectrum (fast or thermal) and reactivity (critical or sub-critical) with LEU fuel
- HTGR with LEU fuel was considered as the Analysis Example of EG02

Calculation of Metric Data of 40 EGs

Generation Metric Data of 40 EGs

- EST pick Analysis Example fuel cycle option in each EG
- The fuel cycle performance data of each EG were calculated using the Analysis Example (AE) at the Equilibrium State
- Since each EG consists of multiple fuel cycle option groups and each fuel cycle option group consists of multiple fuel cycle options (technologies), two tactics were adopted.
 - Technology neutral metrics renormalization of mass flow data using the same thermal efficiency
 - Binned metrics
- Calculated physics data are stored using the Fuel Cycle Data Package (FCDP) and populated through the Fuel Cycle Catalog.



Binned Metric Data – SNF+HLW Mass

Table C-1.1. Metric Bins for Mass of SNF+HLW Disposed per Energy Generated

Bin ID	Data Range (t/GWe-yr)	Bin Description			
A	< 1.65	Mass of SNF+HLW disposed per energy generated < 1.65 t/GWe-yr; 1.65 t/GWe-yr is approximately the HLW mass that would result from processing of LWR SNF to separate and recover all uranium			
В	1.65 to < 3	Mass of SNF+HLW disposed per energy generated from 1.65 t/GWe-yr to < 3 t/GWe-yr			
С	3 to < 6	Mass of SNF+HLW disposed per energy generated from 3 t/GWe-yr to < 6 t/GWe-yr			
D	6 to < 12	Mass of SNF+HLW disposed per energy generated from 6 t/GWe-yr to < 12 t/GWe-yr			
E	12 to < 36	Mass of SNF+HLW disposed per energy generated from 12 t/GWe-yr to < 36 t/GWe-yr; contains the basis of comparison (EG01)			
F	≥ 36	Mass of SNF+HLW disposed per energy generated equals or greater than 36 t/GWe-yr			

Fuel Cycle Data Repository

Information

Nuclear Technologies

Nuclear Fuels

Nuclear Fuel Cycle Strategies

Nuclear System Functions

References

Resources

FAQs

Glossary

Contributors

Contact Information

User Feedback

The Nuclear Fuel Cycle Options Catalog is an interactive website that provides information about nuclear fuel cycles, their performance, and the technologies that may be used to implement them. The fuel cycles cover a broad range of possible options, including once-through and recycle. At the present time, information contained in the catalog is primarily based on analyses performed as part of the Fuel Cycle Research and Development Program in the Department of Energy Office of Nuclear Energy to improve understanding of differences in performance among various fuel cycles. These analyses inform the decision-making process at the Department of Energy for planning and conducting long-term research and development. The Catalog is being actively developed at this time, and periodic addition of new fuel cycle information is planned, which is anticipated to include input from additional contributors.

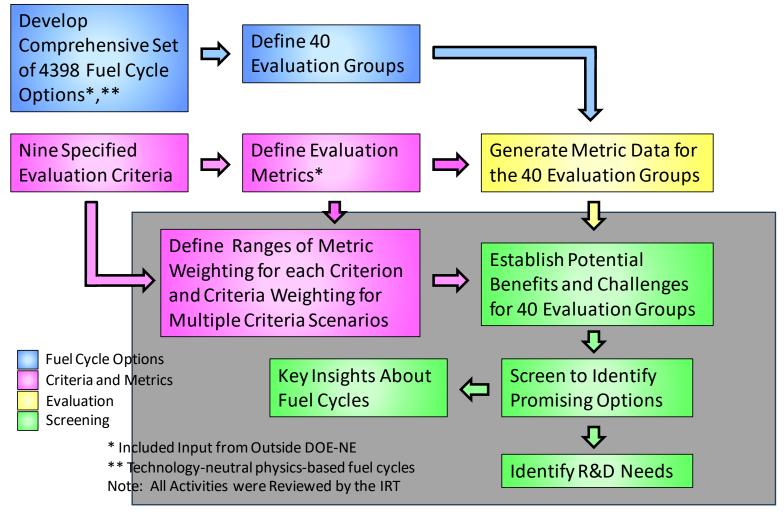
In 2014, an <u>evaluation and screening study</u> was completed for the **United States Department of Energy** which provided information about the potential benefits and challenges of nuclear fuel cycle options (i.e., the complete nuclear energy system from mining to disposal). This information can be used to strengthen the basis and provide guidance for the activities undertaken by the Department of Energy, Office of Nuclear Energy, Fuel Cycle Research and Development program. This catalog includes, but is not limited to, information that was part of the input used in the evaluation and screening study. More information regarding the Evaluation and Screening Study, a Nuclear Fuel Cycle Cost Calculator, and the Advanced Fuel Cycle Cost Basis report can be found <a href="https://example.com/here/brown-reported-repor

000000000

Screenshot

https://sai.inl.gov/

Completion of Fuel Cycle Data Package System Datasheets for 2013 Evaluation and Screening


Fuel Cycle Research & Development

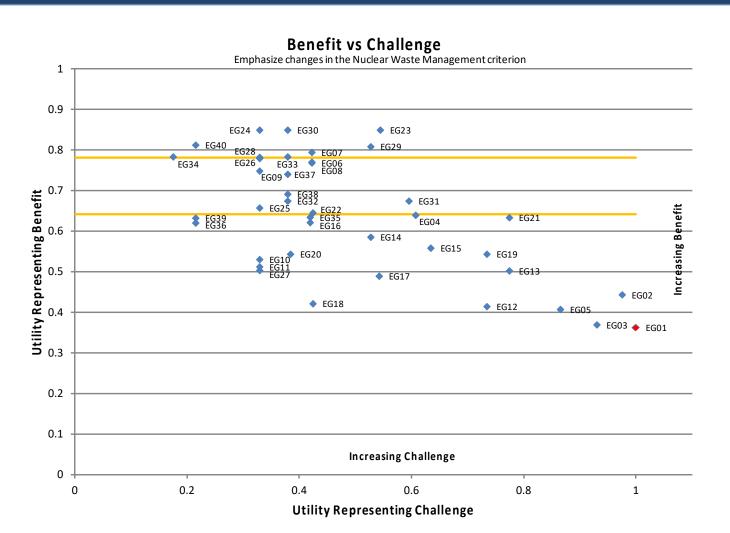
Prepared for
U.S. Department of Energy
Fuel Cycle Options Campaign
T. K. Kim, E. A. Hoffman, and T. A. Taiwo
May 30, 2013
ANL-FCT-333
FCRD-FCO-2013-000165

Screening Study

Screening Study using Scenarios

Table F-1.1.1. Criteria Tradeoff Factors Used for Each of the Eleven Scenarios.

Table F-1.1.1. Criteria Tradeoff Factors Used for Each of the Eleven Scenarios.						
Scenario	Nuclear Waste Management Criterion	Resource Utilization Criterion	Environmental Impact Criterion	Safety (Safety Challenge Metric only)		
1. Equal Criteria Tradeoff Factors	0.25	0.25	0.25	0.25		
2. Emphasize changes in the Nuclear Waste Management Criterion	0.7	0.1	0.1	0.1		
3. Emphasize changes in the Resource Utilization Criterion	0.1	0.7	0.1	0.1		
4. Emphasize changes in the Environmental Impact Criterion	0.1	0.1	0.7	0.1		
5. Emphasize changes in the Safety Criterion	0.1	0.1	0.1	0.7		
6. Reduce physical impacts of producing nuclear power ⁽¹⁾	0.33	0.33	0.33			
7. Nuclear Waste Management, Resource Utilization, and Safety Criteria	0.33	0.33		0.33		
8. Unlimited natural fuel resources	0.33		0.33	0.33		
9. Resource utilization, Environmental Impact, and Safety Criteria		0.33	0.33	0.33		
10. Nuclear Waste Management and Resource Utilization Criteria only	0.5	0.5				
11. Nuclear Waste Management and Safety Criteria only	0.5			0.5		
(1) Criteria tradeoff factors sum to 1. For this and all of	ther econorios includir	na three criteria th	e tradeoff factors are d	ignlayed as 0.33		


⁽¹⁾ Criteria tradeoff factors sum to 1. For this and all other scenarios including three criteria, the tradeoff factors are displayed as 0.33 but should be understood to represent 1/3.

 A screening study was conducted with eleven scenarios with different weighting factors.

Scenario #2 – Emphasize Waste Management

- EG01 does not have any challenging issues, but it has the lowest benefit
- EG23, EG24, and EG30 give the best benefit in waste management

Performance of Promising Fuel Cycles

	Once-through	teria for the Best-Performing Evaluation Groups. Continuous Recycle			
Fuel Cycle Option	EG01 – Current U.S. Fuel Cycle	EG23 – U/Pu Recycle, Fast Systems	EG24 – U/TRU Recycle, Fast Systems	EG30 – U/TRU Recycle, Fast and Thermal Systems	
Nuclear Waste Management Criterion					
Mass of SNF+HLW, t/GWe-yr	12-36	< 1.65	< 1.65	< 1.65	
Activity @100 years, MCi/GWe-yr	1.05-1.60	0.67-1.05	0.67-1.05	0.67-1.05	
Activity @100,000 years, MCi/GWe-yr	0.001-0.0023	0.0005-0.001	0.0005-0.001	0.0005-0.001	
Mass of DU+RU+RTh, t/GWe-yr	120-200	<1	<1	<1	
Volume of LLW, m ³ /GWe-yr	252-634	252-634	252-634	252-634	
Proliferation Risk Criterion		•	•		
Material attractiveness – normal operating conditions	Unattractive	Unattractive	Unattractive	Unattractive	
Nuclear Material Security Risk Criterion					
Material attractiveness – normal operating conditions	Unattractive	Unattractive	Unattractive	Unattractive	
Activity @10 years per energy generated	Highly radioactive	Highly radioactive	Highly radioactive	Highly radioactive	
Safety Criterion		*			
Challenges of addressing safety hazards	Reference	Similar	Similar	Similar	
Safety of the deployed system	Yes	Yes	Yes	Yes	
Environmental Impact Criterion	•		•		
Land use, km ² /GWe-yr	0.1 - 0.2	< 0.1	< 0.1	< 0.1	
Water use, ML/GWe-yr	15000 - 30000	15000-30000	15000-30000	15000-30000	
CO ₂ emission, kt/GWe-yr	30-60	< 30	< 30	< 30	
Radiological exposure, person-Sv/GWe-yr	0.5 - 5	0.5 - 5	0.5 - 5	0.5 - 5	
Resource Utilization Criterion					
Uranium resources, t/GWe-yr	> 145	< 3.8	< 3.8	< 3.8	

- The most promising fuel cycle is "Continuous recycling of U/Pu or U/TRU with new natural uranium fuel in fast or along with thermal critical reactors."
- Compared to the current U.S. fuel cycle, the performance benefits of the most promising fuel cycles are
 - Greater than a factor of 10 reduction in the amount of highlevel waste disposal.
 - Greater than a factor of 1,000 reduction in the amount of uranium disposal.
 - Greater than a factor of 100 improvement in uranium utilization.

Conclusions

- Systems Analysis and Integration (aka, Fuel Cycle Options) conducted the Nuclear Fuel Cycle Evaluation and Screening study to identify promising fuel cycles in the United States
 - DOE-NE specified the Evaluation Criteria
 - The Evaluation and Screening Team (EST) developed evaluation metrics and procedures
 - The E&S study results are available at the Systems Analysis and Integration (SA&I) campaign (https://sai.inl.gov/)
- The E&S study concluded that the most promising fuel cycle is "Continuous recycling of U/Pu or U/TRU with new natural uranium fuel in fast or along with thermal critical reactors."

