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Update on the Chlorine Isotopes
Project at PNNL

 The Chlorine Isotopes Project was granted to PNNL by
DOE-NE in FY2022.
Prototype built- FY22-23

Extended system design/construction FY24-26

* The effort seeks to provide a credible se?aration
of natural abundance 3°37Cl to enriched 3"Cl.

« A credible partitioning of 3°Cl *’Cl requires a
good first pass enrichment, but additionally at a
scale that will accommodate the prodigious
amount of chloride salt and fertile/fissionable
metal chlorides required in the core of a MCSR.
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TD of Liquid UF; (S-50 Plant) Clinch River

 The S-50 Project was part of the Manhattan | |" |
Project’s effort to select an enrichment LA
method for uranium | ||| ' l

« 2,142 columns, each 48 ft ( 14.6 m) long

 Serial connection

* Infinitely tall column = infinite purity

+ 31,237 m, 102816 ft
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Why enrich 3°CI?7Cl from its natural abun
35CI(75.77%), 37Cl (24.23%)

Amongst the issues prejudicial to the success of the MCSR reactor

cross section of the natural abundance 35Cl isotope in the range of en or(
interest.

35Cl (about 76% of natural chlorine) features a relatively large (n,y) cross section
(44 b) at thermal energies

The 3¢Cl activation product, is a long-lived (301,000 years) energetic (709 keV)
beta emitter that is highly soluble Iin water.
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With Concern to Reactor Longt \

» The 35CI(n,p)35S reaction, which decays back to 33Cl. The an
reaction 36CI(n,p)36S produces stable 36S. Accordingly, yields oi
accumulate in the salt. For a properly reduced fuel salt, the likelyformo
sulfur would be S%, S0. A few thousand ppm S are corrosive to Ni, Mc
additionally react with fertiles. H,/HCI + S, = H,S

UCI; + H,S = US

y (ppt)

PuCl; + H,S = Pu,S, .,y Where Pu,S, _ PuS, Pu;S,, PusS;, Pu,S;

y (ppt

« The 3°Cl(n,a)%P produces radio-phosphorus (t,,= 14d) that also decays
to more sulfur. P can interact with these MOCs as PCI; or more reduced
forms of phosphorous
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P&ID for the Two, 6-Foot Serial Columns al
Associated Apparatus

Apparatus built in the
1st quarter of 2023

Completed shakedown
testing in July of 2023

Two serially connected
columns, 3.6m

Internal volume of ~7.4
L for HCI

Validated model
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P&ID for the Extended TDIS System | i

HCI gas collection

\

{

{ \ 208 \l/AC

== HCI gas introduction ® ®
Low-Fressure Alarm _— | |
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Enrichment Predictions of the Extend

System

* The validated COMSOL
MPP model provides
design predictions for
larger scale TDIS
systems

6 columns total serial
length 18 m

Mole Fraction >’Cl in Product Gas

«~200 L
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Fuel Salt, Flush salt, Salt Synthes

The fuel salt in a chloride molten salt fast reactor (CI-MSFR
be comprised of a specific eutectic composition of alkali andic ,,', 3
earth chlorides that solubilize major and minor actinide chlorides
the fertile component(s).

Synthesis / purification using

enriched 37Cl

The reasons for alternative
synthetic pathways provided by

MSRE

Joint IAEA-NEA-EC/JRC Workshop on the
Taxonomy and Related Terminology of Fuel
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U.S. DEPARTMENT OF

ENERGY

- Costs of Raw Materials Used
in MSRE Fluoride Production

Unit Cost Total Cost
(dollars) {dollars)

Material Quantity

TLiF 12,919 tb 16.509 213,164

BeF, 11,472 I 5,70 65,390

21F, 2,265 Ib 8.00 18,120

UF, 90 kg 12,000.00 1,080,000
(2 35y basis)

Total 1,376,674

?Includes $1.82 per pound for prepasation as flucride salt.

Office of
NUCLEAR ENERGY



Salt Purification and Reactor Prepa
by Flush

Impurity Concentrations

Fluoride Production for the MSRE —
Average of Chemical Analyses of Salt Batches

Chemical Composition Average Concentration of Impurities (ppm)

(mole %) Ni Fe S Oxide Removed

Salt Mixture

Coolant 7LiF-BeF, 26 166 <5 1460
(66-34)

Flush TLiF-BeF, 39 123 <5 1650
(66-34)

Fuel solvent TLiF-BeF, -Zrk, 15 77 <5 728
(64.7-30.1-5.2)

Depleted fuel TLiF-238UF, 15 50 <5 386
concentrate (73-27)

Joint IAEA-NEA-EC/JRC Workshop on the Taxonomy and
Related Terminology of Fuel Cycles for Molten Salt Reactors




Flush Salt with H,/HF versus H,/ H*'Cl

Impurity concentrations handled by removal with 10/1 H2
100L/min (volatile H,S, PH;) Faster reduction with Be, Zr |

reduction products and mechanism determine appropriate |
process, e.g., use of H*’Cl alters the corrosion mechanism =
and products (PH,CI solid), leading to time, temperature, flow -
rate sparging studies

P, + 6H°'Cl = 2P*'Cl,,, + 2PH,, This is a campaign!
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Salt Purity by Synthetic DeS|g“

(NH,),COy,) + 2H*'Clg) — 2NH,*'Cl) + €O, + Hy0(qw |
Na,COy) + 2HClg) = 2Na, Cl) +COzq *+ H;0q) |

K2C03(S) + 2H37C|(g) —> 2k37CI(S) + COZ(Q) + Hzo(g) \5‘ o I

NH,”’Cl o, + NaOH (aq) > NH, +Na''Cl + H,0y

Na® + H¥Cl,,— Na“’Cl + 1/2H, This is a

campaign!

Joint IJAEA-NEA-EC/JRC Workshop on the Taxonomy and
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Recovery of Fertiles Content from UNF fo
Conversion to 3’Cl Forms

In FY2025, we co-opted a well-known method to scavenge o
fertiles populations in used nuclear fuel (UNF) for conversion N ]_,
to their chloride forms as required for their solubility in a CI-MSFR. Because lj |
fuel reprocessing is a mature art with several fuel types and evolving separative
techniques, the molten salt community has a tool box of methods to target the
major and minor actinides from cooled nuclear fuels and fresh fuel.

A
Pu,(C,0,);-10H,0 + xsNH,*’Cl, <> 2PuM¥’Cl, + 6NH, + 6CO, + yHCI + xH,0

The method follows for U, Np, Pu, Am, Cm, Ln‘s It’s another campaign!

Similarly, the carbonates and others can be ppted chlorinated and sublimed
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Harvest of Fertiles from UNF for Co_,,
to 37ClI '

We modeled speciation of selected actinides, fission products, and corro: )
products in proportions typical for an irradiated fuel dissolver solution usedi
the PUREX process.

 The feed solution contains 26 components in 2 M HNO3.

* 1.2 M oxalic acid in 2 M HNO, is added to the feed solution to achieve 1.2-to-1
molar ratio of oxalate to uranium. Third column of Table 1 shows
concentrations for Ni, Nd, Sr, U, Pu, and Am in solution of 0.6 M oxalic acid in
2M HNO, calculated for this condition of two equal volumes mixed.
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Harvest of Fertiles from UNF for Conversion

-- Calculated

Table1 Shows initial and final Original Ini::lils??nnp(:;?:;a;i?n Species bLeotga Log Ksp precipitation
concentrations of 6 representative | it el s Eero Yt
metals. Table 2 shows the T oxn, 4
- OxC 1.64
protonation constants of oxalate o | 29xt0f onea 268
. . . Cs 9.1x10° ’
anion, 3’Cl binding constants for 1:1 B | aax10? OxNi 37
- Fe .0 x 10 Ox,Ni 6.6
and 1:2 complexes of Ca2*, Ni2*, Nd**, m=mmmerts ouV) 642
. La 1x10°
UO,2*, Pu, and Am3* with oxalate, T TR oeun 1064
— Nd .3x107? 5x10° X2 .
as well as solubility products of T YT R YT OxPU(V) 874
- Pd 8x10°
oxalate salts for these metal cations SRR g’;fr:g::)) 162
- . Rb 2x10° .
with most of these values found in R T 51107 OxAm(l) 7.7
. . 0 O Sm 4x10° - -
technical literature for 0.5 to 2M ionic RS -1 138
strength Sr 4.1x10° 2.05x10° N
. Te 8.6 x 10 . o
Y 2.3x10° Ca0x(solid) 6.53 precipitation
2 19 x 107 _ Nd,Oxy(solid) -30.89 99.66
N e 2 NiOx(solid) 943 9135
u <102 < 10° u(vio lid -9 98.69
Joint IAEA-NEA-EC/JRC Workshop on :m 11'954 x1100'3 ;3 X 124 Pu((IV))O))(((:c:Ii()i) -21.4 99.55
15 the Taxonomy and Related Terminology of Te 1 8x10° ' 2 ' '
Fuel Cycles for Molten Salt Reactors HNO; 2'_ 0 X 10° 2010’ Am(lll),0x;(solid) -30.65 99.61
Oxalic Acid Not present 6 x 10"




Fuel Reprocessing: Chloride Volatility as an ¢

for Continuous Processing of an Irradiated

Chloride Salt

Cl volatility is
another
campaign!

Lanthanide Boiling |

i Sublimation Boiling
eI Point, C Point, C
in vacuum at
UCl, 500—650° 791
Decomposes
CEL, at 100°
UCl, 19
NpCl, 500
NpCl, >500
PuCl, 600-800

~350
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Chloride Point, C
La 1812
Ce 1727
Pr 1710
Nd 1600
Pm 1670
Sm Decomp
Eu Decomp
Gd 1580
Tb 180-200
Dy 1530
Ho 1500
Er 1500
Tm 1488
Yb 1900
Lu 1422




Fuel Reprocessing: Chloride Volatility as an

for Continuous Processing of

o S
)

Noble Metals and Others of Interest

an Irradiated Chloride Salt Meting  Boiling  Sublimation
Point,°C Point,°C point,°C
: — — MoCl; 194 268 -
Melting Boiling Sublimation
Point°’C  Point,°C pointec Mol R = I
AgCl 455 1550 — TcCl, decomp 300 ?
TeCl, 224 380 200
> 450
TeCl, 209 328 yes TcCl; e decomp =
ZrCl, — 437 331 > 450
S s TeBl; ===
ZrCl; 627 decomp
ZrCl 727 1292 — i <-30
= RuCl, o~ - decomp to
NbCl; 204 254 yes decomp RuCl,
NbCl, decom>800 no 275 RuCl, >s0
NbCl; dis>600 no no decomp
RuCl, = mmmy 2=

(95Zr:t, ,=64d)
RhCl,

Joint IAEA-NEA-EC/JRC Workshop on the B
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- Y27 "
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4.5 TBg/mmol =




Optimized Salt Reprocessing of a

With exception 3’Cl-volatility the processes
listed may not require 3’Cl addition

Reconstitution of salt requires the metal
filter

Continuous salt processing with
eutectic reconstitution is another
campaign!

Joint IAEA-NEA-EC/JRC Workshop on U.S. DEF AL IR Office of

SX-Ac’s, Ln’s
Metals Filter

Metals Filter

Salt
Reconstitution
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