

Chlorine-37 and Its Utility to Enhance Reactor Longevity

Bruce McNamara, Sergey Sinkov
Pacific Northwest National Laboratory

Chlorine-37 and Its Utility to Enhance Reactor Longevity

PNNL TEAM

Bruce McNamara Physical Chemist (PI)

Mike Powell Engineering Computational (COMSOL) Design

Sergey Sinkov Radioanalytical Chemistry

Benjamin Scheibe Inorganic Chemistry

Tyler Schlieder Mass spectrometry

Update on the Chlorine Isotopes Project at PNNL

 The Chlorine Isotopes Project was granted to PNNL by DOE-NE in FY2022.

Prototype built- FY22-23 Extended system design/construction FY24-26

- The effort seeks to provide a credible separation of natural abundance ^{35,37}Cl to enriched ³⁷Cl.
- A credible partitioning of ³⁵Cl /³⁷Cl requires a good first pass enrichment, but additionally at a scale that will accommodate the prodigious amount of chloride salt and fertile/fissionable metal chlorides required in the core of a MCSR.

TD of Liquid UF₆ (S-50 Plant) Clinch River

- The S-50 Project was part of the Manhattan Project's effort to select an enrichment method for uranium
- 2,142 columns, each 48 ft (14.6 m) long
- Serial connection
- Infinitely tall column = infinite purity
- 31,237 m, 102816 ft

Why enrich ³⁵Cl/³⁷Cl from its natural abundance: ³⁵Cl(75.77%), ³⁷Cl (24.23%)

Amongst the issues prejudicial to the success of the MCSR reactor is the (n,γ) cross section of the natural abundance ³⁵Cl isotope in the range of energies of interest.

 35 Cl (about 76% of natural chlorine) features a relatively large (n,γ) cross section (44 b) at thermal energies

The ³⁶Cl activation product, is a long-lived (301,000 years) energetic (709 keV) beta emitter that is highly soluble in water.

With Concern to Reactor Longevity

• The 35 Cl(n,p) 35 S reaction, which decays back to 35 Cl. The analogous reaction 36 Cl(n,p) 36 S produces stable 36 S. Accordingly, yields of sulfur will accumulate in the salt. For a properly reduced fuel salt, the likely form of the sulfur would be S²⁻, S⁰. A few thousand ppm S are corrosive to Ni, Mo and additionally react with fertiles. $H_2/HCl + S_x = H_2S$

$$UCI_3 + H_2S = U_xS_{y (ppt)}$$

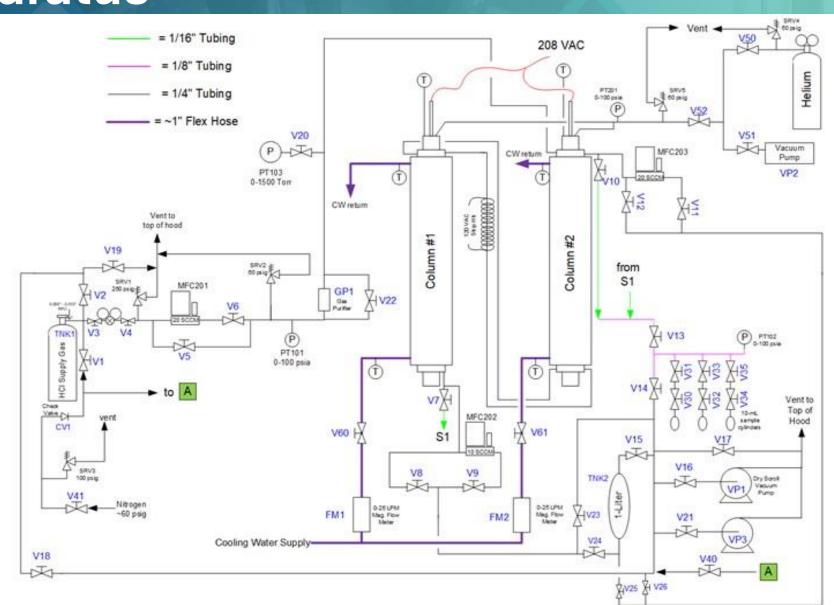
 $PuCl_3 + H_2S = Pu_xS_{y (ppt)}$, Where $Pu_xS_y = PuS$, Pu_3S_4 , Pu_5S_7 , Pu_2S_3

• The 35 Cl(n, α) 32 P produces radio-phosphorus (t_{1/2}= 14d) that also decays to more sulfur. P can interact with these MOCs as PCl₃ or more reduced forms of phosphorous

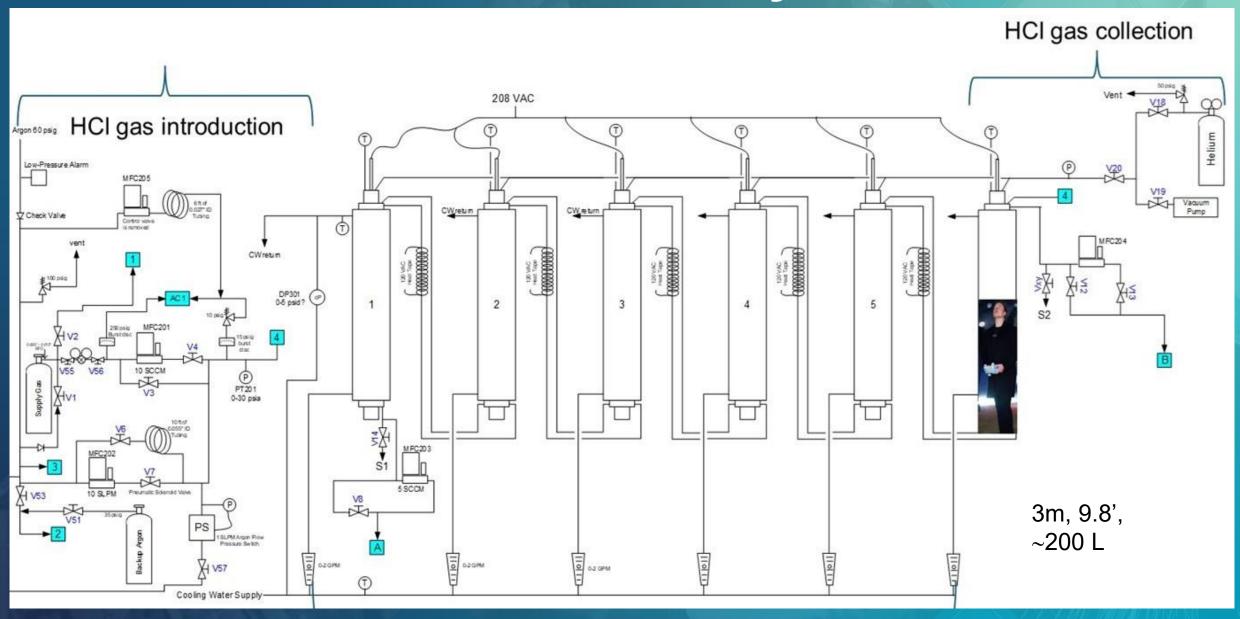
ENERGY Office of NUCLEAR ENERGY

P&ID for the Two, 6-Foot Serial Columns and Associated Apparatus

Apparatus built in the 1st quarter of 2023


Completed shakedown testing in July of 2023

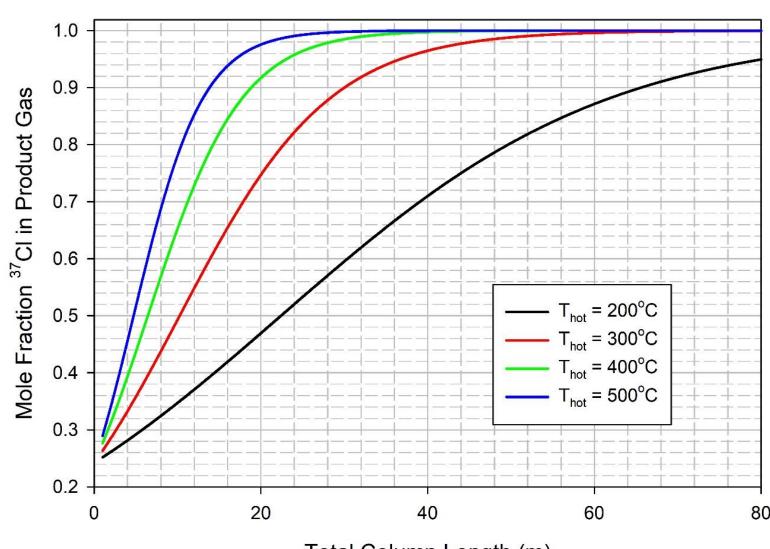
Two serially connected columns, 3.6m


Internal volume of ~7.4 L for HCI

Validated model

Joint IAEA-NEA-EC/JRC Workshop on the Taxonomy and Related Terminology of Fuel Cycles for Molten Salt Reactors

P&ID for the Extended TDIS System



Enrichment Predictions of the Extended TDIS System

- The validated COMSOL MPP model provides design predictions for larger scale TDIS systems
- 6 columns total serial length 18 m
- ~200 L

Joint IAEA-NEA-EC/JRC Workshop on the Taxonomy and Related Terminology of Fuel Cycles for Molten Salt Reactors

8

Fuel Salt, Flush salt, Salt Synthesis ³⁷Cl

The fuel salt in a chloride molten salt fast reactor (CI-MSFR), might be comprised of a specific eutectic composition of alkali and/or alkaline earth chlorides that solubilize major and minor actinide chlorides as

the fertile component(s).

Synthesis / purification using enriched ³⁷CI

The reasons for alternative synthetic pathways provided by **MSRE**

Material	Quantity	Unit Cost (dollars)	Total Cost (dollars)
⁷ LiF	12,919 lb	16.50 ^a	213,164
BeF_2	11,472 lb	5.70	65,390
ZrF_4	2,265 lb	8.00	18,120
UF ₄	90 kg (²³⁵ U basis)	12,000.00	1,080,000
		Total	1,376,674

Salt Purification and Reactor Preparation by Flush

Impurity Concentrations

20 252	Fluoride Production for the MSRE -	
Average	of Chemical Analyses of Salt Batches	

Salt Mixture	Chemical Composition (mole %)	Average Concentration of Impurities (ppm)				
		Cr	Ni	Fe	S	Oxide Removed
Coolant	⁷ LiF-BeF ₂ (66-34)	19	26	166	<5	1460
Flush	⁷ LiF-BeF ₂ (66-34)	16	39	123	<5	1650
Fuel solvent	⁷ LiF-BeF ₂ -ZrF ₄ (64.7-30.1-5.2)	21	15	77	<5	728
Depleted fuel concentrate	⁷ LiF- ²³⁸ UF ₄ (73-27)	9	15	50	<5	386

Flush Salt with H₂/HF versus H₂/ H³⁷Cl

Impurity concentrations handled by removal with 10/1 H₂/HF 100L/min (volatile H₂S, PH₃) Faster reduction with Be, Zr metal

reduction products and mechanism determine appropriate process, e.g., use of H³⁷Cl alters the corrosion mechanism and products (PH₄Cl solid), leading to time, temperature, flow rate sparging studies

$$P_4 + 6H^{37}CI = 2P^{37}CI_{3(g)} + 2PH_{3(g)}$$

This is a campaign!

Salt Purity by Synthetic Design

$$\begin{split} &(\text{NH}_4)_2\text{CO}_{3(s)} + 2\text{H}^{37}\text{CI}_{(g)} \to 2\text{NH}_4{}^{37}\text{CI}_{(s)} + \text{CO}_{2(g)} \ + \ \text{H}_2\text{O}_{(g)} \\ &\quad \text{Na}_2\text{CO}_{3(s)} + 2\text{H}^{37}\text{CI}_{(g)} \to 2\text{Na}_2{}^{37}\text{CI}_{(s)} \ + \ \text{CO}_{2(g)} \ + \ \text{H}_2\text{O}_{(g)} \\ &\quad \text{K}_2\text{CO}_{3(s)} + 2\text{H}^{37}\text{CI}_{(g)} \to 2\text{k}^{37}\text{CI}_{(s)} + \ \text{CO}_{2(g)} \ + \ \text{H}_2\text{O}_{(g)} \\ &\quad \text{NH}_4{}^{37}\text{CI}_{(s)} + \ \text{NaOH} \ (\text{aq}) \to \text{NH}_3 + \text{Na}^{37}\text{CI} \ + \ \text{H}_2\text{O}_{(g)} \end{split}$$

$$NH_{3(g)} + H^{37}CI_{(g)} \rightleftharpoons NH_4^{37}CI_{(s)}$$

$$Na^{0} + H^{37}CI_{(g)} \rightarrow Na^{37}CI + 1/2H_{2}$$

$$K^0 + H^{37}CI_{(g)} \rightarrow k^{37}CI + 1/2H_2$$

$$\rho_{Na}$$
 = 0.9 g*cm-1, bp= 883°C

$$\rho_{K}$$
 = 0.83 g*cm-1, bp= 760°C

$$\rho_{Mg}$$
 = 1.74 g*cm-1, bp= 1090°C

Recovery of Fertiles Content from UNF for Conversion to ³⁷CI Forms

In FY2025, we co-opted a well-known method to scavenge fertiles populations in used nuclear fuel (UNF) for conversion to their chloride forms as required for their solubility in a CI-MSFR. Because UNF fuel reprocessing is a mature art with several fuel types and evolving separative techniques, the molten salt community has a tool box of methods to target the major and minor actinides from cooled nuclear fuels and fresh fuel.

В

$$Pu_{2}(C_{2}O_{4})_{3}.10H_{2}O + xsNH_{4}^{37}CI_{(s)} \stackrel{\Delta}{\leftrightarrow} 2Pu^{(III)37}CI_{3} + 6NH_{3} + 6CO_{2} + yHCI + xH_{2}O$$

The method follows for U, Np, Pu, Am, Cm, Ln's It's another campaign!

Similarly, the carbonates and others can be ppted chlorinated and sublimed

Harvest of Fertiles from UNF for Conversion to ³⁷Cl

We modeled speciation of selected actinides, fission products, and corrosion products in proportions typical for an irradiated fuel dissolver solution used in the PUREX process.

- The feed solution contains 26 components in 2 M HNO3.
- 1.2 M oxalic acid in 2 M HNO₃ is added to the feed solution to achieve 1.2-to-1 molar ratio of oxalate to uranium. Third column of Table 1 shows concentrations for Ni, Nd, Sr, U, Pu, and Am in solution of 0.6 M oxalic acid in 2M HNO₃ calculated for this condition of two equal volumes mixed.

Harvest of Fertiles from UNF for Conversion to ³⁷CI

Table1 shows initial and final concentrations of 6 representative metals. Table 2 shows the protonation constants of oxalate anion, ³⁷Cl binding constants for 1:1 and 1:2 complexes of Ca²⁺, Ni²⁺, Nd³⁺ UO₂²⁺, Pu⁴⁺, and Am³⁺ with oxalate, as well as solubility products of oxalate salts for these metal cations with most of these values found in technical literature for 0.5 to 2M ionic strength.

			1,000
	Component	Original concentration, mol/L	Initial concentration for simplified 7- component feed after introduction of oxalic acid solution, mol/L
	Ce	8.0 x 10 ⁻³	
	Cr	2.9 x 10 ⁻²	
	Cs	9.1 x 10 ⁻³	
	Eu	4.4 x 10 ⁻⁴	
	Fe	6.0 x 10 ⁻²	
,	Gd	4.9 x 10 ⁻⁴	
1	La	4.1 x 10 ⁻³	
	Мо	5.8 x 10 ⁻³	
4	Nd	1.3 x 10 ⁻²	6.5 x 10 ⁻³
	Ni	4.3 x 10 ⁻²	2.15 x 10 ⁻²
	Pd	6.8 x 10 ⁻⁵	
	Pr	3.6 x 10 ⁻³	
	Rb	1.2 x 10 ⁻³	
	Ru	5.1 x 10 ⁻³	
	Sm	2.4 x 10 ⁻³	
•	Sn	2.0 x 10 ⁻⁴	
	Sr	4.1 x 10 ⁻³	2.05 x 10 ⁻³
	Te	8.6 x 10 ⁻⁴	
	Y	2.3 x 10 ⁻³	
	Zr	1.9 x 10 ⁻²	
	U	1.0 x 10 ⁰	5 x 10 ⁻¹
	Np	1.0 x 10 ⁻³	
	Pu	1.5 x 10 ⁻²	7.5 x 10 ⁻³
	Am	1.94 x 10 ⁻³	9.7 x 10 ⁻⁴
	Тс	1.8 x 10 ⁻³	
	HNO₃	2.0 x 10 ⁰	2.0 x 10 ⁰
	Oxalic Acid	Not present	6 x 10 ⁻¹

Species OxH	Log beta	Log K _{sp}	precipitation yield, %
OxH ₂	4.64		
OxCa	1.64		
Ox₂Ca	2.68		
OxNi	3.7		
Ox ₂ Ni	6.6		
OxU(VI)	6.42		
$Ox_2U(VI)$	10.64		
OxPu(IV)	8.74		
$Ox_2Pu(IV)$	16.92		
OxAm(III)	4.17		
Ox ₂ Am(III)	7.77		
H-1	-13.8		
CaO ₂₄ (a alia!)		C F2	No
CaOx(solid)		-6.53	precipitation
Nd ₂ Ox ₃ (solid)		-30.89	99.66
NiOx(solid)		-9.43	91.35
U(VI)Ox(solid)		-9	98.69
Pu(IV)Ox ₂ (solid)		-21.4	99.55
Am(III) ₂ Ox ₃ (solid)		-30.65	99.61

Calculated

Fuel Reprocessing: Chloride Volatility as an Option for Continuous Processing of an Irradiated Chloride Salt 2H37Cl_(q) → H₂ + 37Cl₂ Lanthanide Boiling

CI volatility is another campaign!

Actinide	Sublimation Point, C	Boiling Point, C
UCI ₄	in vacuum at 600–650°	791
UCI ₅	Decomposes at 100°	
UCI ₆	75	
NpCl ₄	500	
NpCl₃	>500	
PuCl ₃	600-800	
CmCl ₃	~350	

Lanthanide	Boiling	Ln(II)
Chloride	Point, C	boiling, C
La	1812	-
Ce	1727	-
Pr	1710	E
Nd	1600	-
Pm	1670	-
Sm	Decomp	1310
Eu	Decomp	2190
Gd	1580	=
Tb	180-200	<u> </u>
Dy	1530	Decomp
Ho	1500	-
Er	1500	
Tm	1488	Decomp
Yb	1900	1900
Lu	1422	

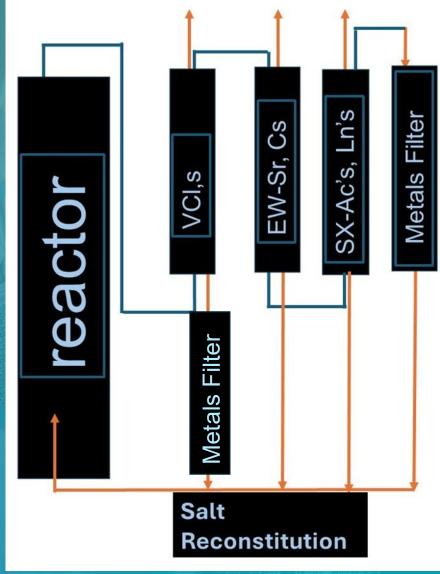
Fuel Reprocessing: Chloride Volatility as an Option

for Continuous Processing of an Irradiated Chloride Salt

	Melting	Boiling	Sublimation
	Point,°C	Point,°C	point,°C
AgCI	455	1550	
TeCl ₄	224	380	200
TeCl ₂	209	328	yes
ZrCl ₄		437	331
ZrCl ₃	627	_	
ZrCl ₂	727	1292	
NbCl₅	204	254	yes
NbCl₄	decom>800	no	275
NbCl ₃	dis>600	no	no

(⁹⁵ Zr:t	_{1/2} =64d)
	β
(⁹⁵ Nb:	t _{1/2} =35d.
	q/mmol

Noble Metals and Others of Interest


	Melting	Boiling	Sublimation
	Point,°C	Point,°C	point,°C
MoCI ₅	194	268	
MoCl ₄	552		
TcCl ₄	decomp	300	?
TcCl ₃		> 450 decomp	
TcCl ₂		> 450 decomp	
	> 22		< -30
RuCl ₄	> -32		decomp to
	decomp		RuCl ₃
RuCl ₃	> 500 decomp		
RuCl ₂			
RhCl ₃	> 450 decomp		800
PdCl ₂	> 680 decomp		590

Optimized Salt Reprocessing of a CI-MSFR

With exception ³⁷Cl-volatility the processes listed may not require ³⁷Cl addition

Reconstitution of salt requires the metal filter

Continuous salt processing with eutectic reconstitution is another campaign!

Thank you

bruce.mcnamara@PNNL.gov

Joint IAEA-NEA-EC/JRC Workshop on the Taxonomy and Related Terminology of Fuel Cycles for Molten Salt Reactors

Office of NUCLEAR ENERGY