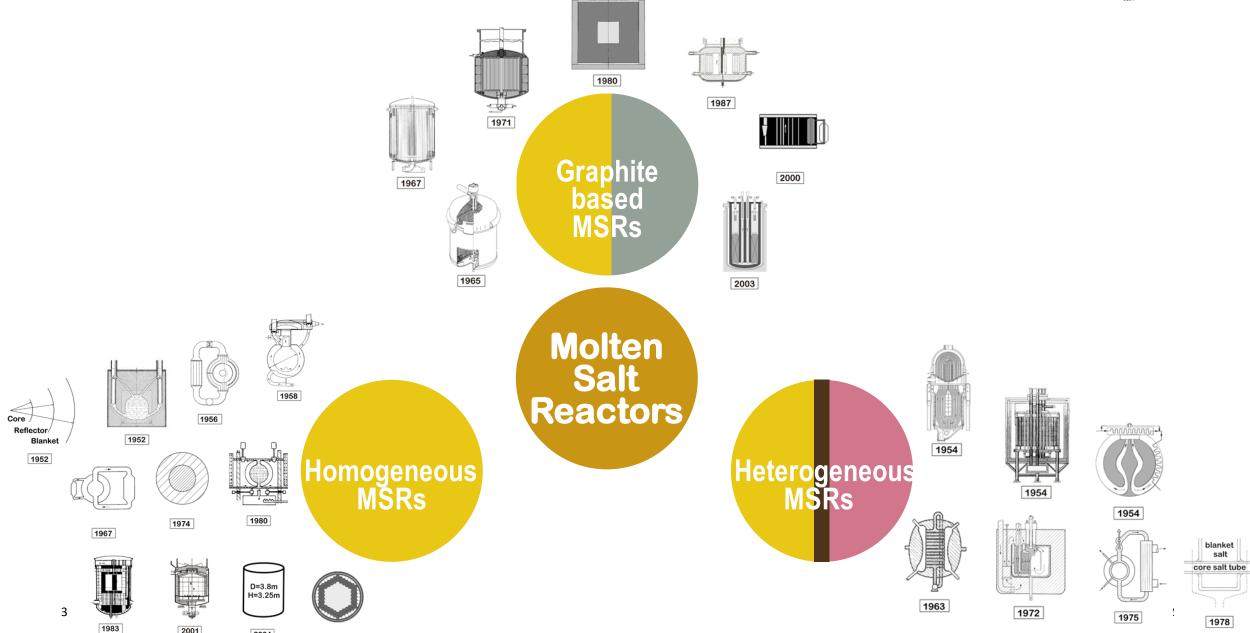


Molten Salt Reactors Taxonomy and Fuel Cycle Performance

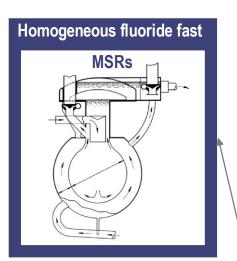
Joint IAEA-NEA-EC/JRC Workshop on the Taxonomy and Related Terminology of Fuel Cycles for Molten Salt Reactors

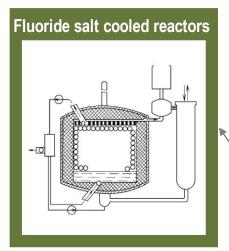
Jiri Krepel 3 – 7 November 2025, IAEA, Vienna



MSR Taxonomy

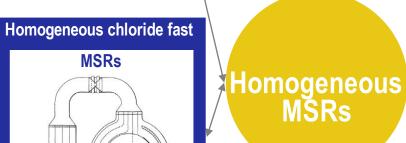
2 02.11.2025


IAEA MSR Taxonomy: 3 Classes



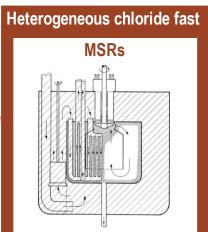
IAEA MSR Taxonomy: 6 Families



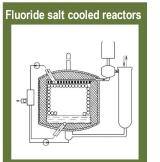

Graphite based MSRs

Molten Salt

Reactors

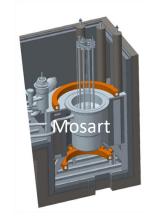


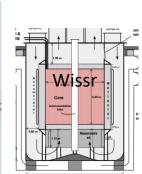
Non-graphite moderated **MSRs** 1-mmm

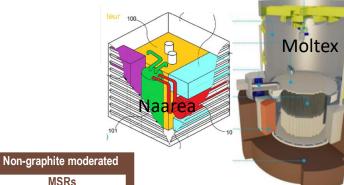


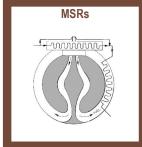
Example of MSR designs

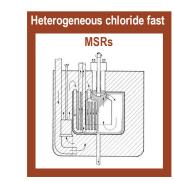
Kairos Power











02.11.2025

F.I.1. Fluoride salt cooled reactors

Types definition: By fuel form (pebble bed vs. prismatic or compacts)

Primary heat exchange: *In core*

Heat convection by fuel: No, dedicated coolant **LiF-BeF**₂ (Li is enriched to ⁷Li)

Fuel form: Triso-particles in graphite matrix

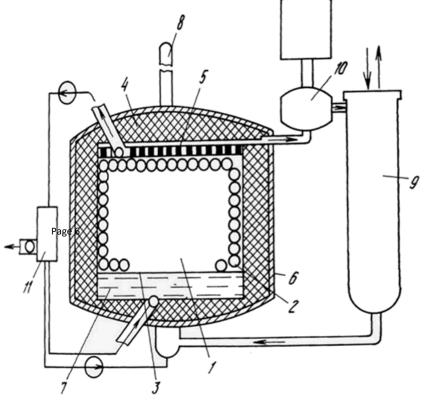
Struct. material in core: *No, graphite moderator and coolant salt are compatible*

Neutronic performance: *Converter*

Self-sustaining breeding: Can not be achieved

Major fuel cycle: Enr. U converter

Leakage utilization: Reflector


Characteristic:

-⁷LiF-BeF₂ has certain moderation power, hence it has negative density effect on reactivity.

- -Very low specific fuel density in some designs:
 - → Unprocessed **spent fuel is volumetric**.
 - → Increased non-fuel parasitic neutron captures.
 - → Core transparency for neutrons (neutron leakage).

Salt cooled reactor with fixed fuel

F.I.2. Graphite moderated MSRs

Types definition: By fuel cycle type (Th-U breeder or enr. U converter)

Primary heat exchange: *Ex core*

Heat convection by fuel: *Yes*

Fuel form: Ac. diluted in fluorides salts, for breeders it is exclusively ⁷LiF-BeF₂ (⁷LiF?)

Struct. material in core: No, graphite moderator and coolant salt are compatible

Neutronic performance: Breeder or converter

Self-sustaining breeding: Can be achieved, is demanding

Major fuel cycle: Closed Th-U or enr. U converter

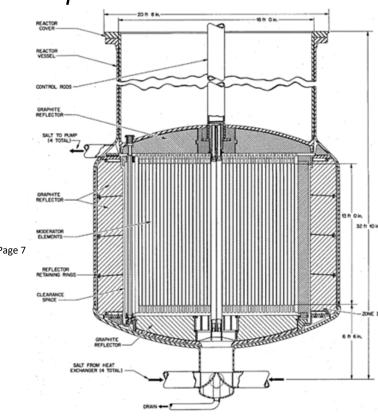
Leakage utilization: Reflector, multi-zone core, blanket

Characteristic:

Specific fuel density is higher than in Fluoride salt cooled reactors.

- Limited graphite life-span as the only reason for its exchange.

Hastelloy vessel protected by graphite reflector.


 Need of fast FPs removal and/or ²³³Pa separation to achieve self-sustaining breeding.

Single-fluid Th-U breeder

> Two-fluid Th-U breede

Uranium converters and other concepts

F.II.3. Homogeneous fluoride fast MSRs

Types definition: By fuel cycle type (Th-U breeder, enr. U converter, burner)

Primary heat exchange: *Ex core*

Heat convection by fuel: *Yes*

Fuel form: Ac. diluted in fluorides salts, for breeders it is typically **7LiF** (FLiNa, FNaK?)

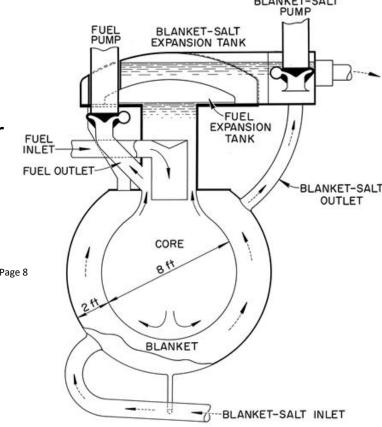
Struct. material in core: *No, homogeneous salt-filled core*

Neutronic performance: Breeder, converter, dedicated burner

Self-sustaining breeding: Can be achieved

Major fuel cycle: Closed Th-U (U-Pu), enr. U converter, burner

Leakage utilization: Blanket, Reflector (Hastelloy)


Characteristic:

-Hastelloy vessel is exposed to neutron flux and should be regularly replaced.

- −Moderation power of ⁷LiF:
 - \rightarrow Softest fast spectra.
 - \rightarrow Low transparency for neutrons.
 - → Possibility of compact cores.

Pu containing fluoride fast rector

F.II.4. Homogeneous chloride fast MSRs

) PSI

Types definition: By fuel cycle type (U-Pu breeder or breed & burn cycle)

Chloride fast breeder reactor

Primary heat exchange: *Ex core*

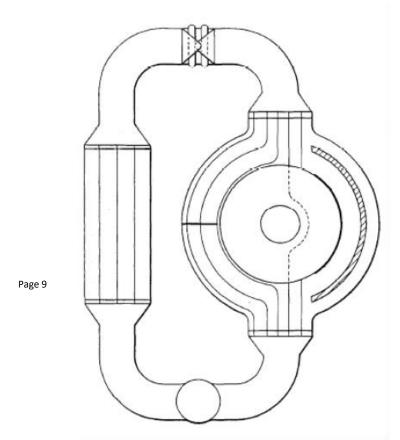
Chloride fast breed & burn reactor

Heat convection by fuel: *Yes*

Fuel form: Ac. diluted in chloride salts, for breeders it is typically **Na**³⁷**Cl**

Struct. material in core: *No, homogeneous salt-filled core*

Neutronic performance: Breeder, Breed and Burn


Self-sustaining breeding: Can be achieved

Major fuel cycle: Closed U-Pu or Breed-and-Burn U-Pu

Leakage utilization: Blanket, Reflector (lead?)

Characteristic:

- -Reactor vessel is exposed to neutron flux and should be regularly replaced.
- -Absence of scattering / moderation power:
 - \rightarrow Transparent for neutrons.
 - → Hardest spectra from all fast reactors.
 - → Large reactor cores, unsuitable for Th-U cycle.

F.III.5. Non-graphite moderated MSRs

Solid moderator

heterogeneous MSR

Liquid moderator heterogeneous MSR

Types definition: By moderator state (solid or liquid moderator)

Primary heat exchange: Ex core*

Heat convection by fuel: Yes*

Fuel form: Ac. diluted in fluorides salts, for breeders it is exclusively ⁷LiF-BeF₂ (⁷LiF?)

Struct. material in core: *Yes, for separation of fuel salt and moderator*

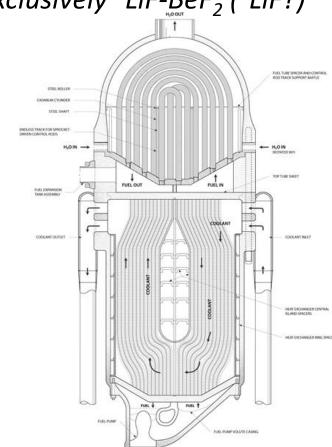
Neutronic performance: Converter, burner

Self-sustaining breeding: *Impossible or very demanding***

Major fuel cycle: Closed Th-U**, enr. U converter, burner

Leakage utilization: Reflector (moderator)

Characteristic:


-Moderator requires structural material for separation:

→ Limited life-span of separation material.

→ Determination of neutronic performance.

* Unless if liquid moderator acts as coolant.

** Relying on low capture structural material (SiC?).

F.III.6. Heterogeneous chloride fast MSRs

) PSI

Types definition: By dedicated coolant type (salt or lead cooled)

Primary heat exchange: In core

Heat convection by fuel: *Usually no, dedicated coolant*

Fuel form: Ac. diluted in chloride salts, for breeders it is typically **Na**³⁷**Cl**

Struct. material in core: *Yes, for separation of fuel salt and dedicated coolant*

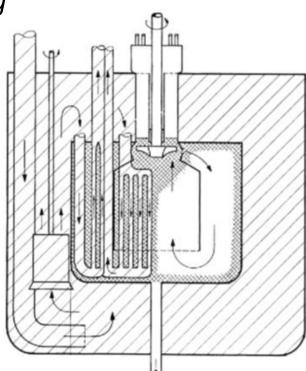
Neutronic performance: Converter, Breeder, Breed and Burn is demanding

Self-sustaining breeding: Can be achieved

Major fuel cycle: Closed U-Pu or enr. U burning

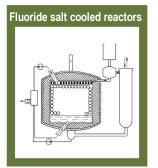
Leakage utilization: Blanket, Reflector (lead?)

Characteristic:


-Coolant requires structural material for separation:

→ Limited life-span of separation material.

- → Reduced neutronic performance.
- \rightarrow It provides additional scattering XS.
- → Possibly smaller cores that homogeneous chloride fast MSRs.


Heterogeneous salt cooled fast MSR

Heterogeneous lead cooled fast MSR

Salts for 6 MSR families

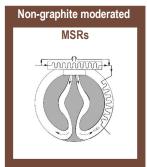
⁷LiF-BeF₂ has certain moderation power, hence it has **negative density effect** on reactivity.

Therefore, it is exclusively used as a dedicated coolant in FHR.

Be has certain moderation power, ⁷LiF-BeF₂ or NaF-BeF₂ should be avoided in breeders.

⁷LiF can be used to achieve Th-U breeding.

LiF-NaF or KF-NaF have lower performance.


U-Pu cycle in fluorides is possible, but the performance suffers by softer neutron spectrum.

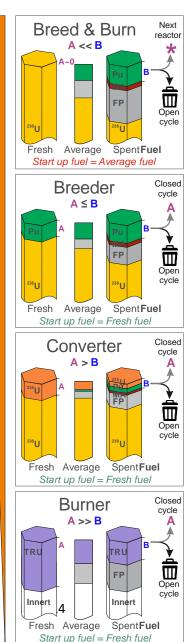
⁷LiF-BeF₂ or ⁷LiF are the only two carrier salts, which can be used to achieve breeding in Th-U cycle. For other cycles other cations like Mg, Na or K can be used.

Fast moderating power of Chlorine is 1/5 of theone for Fluorine and it does not have strong scattering resonances. Hence the spectrum in chlorides is much harder. Many different cations can be used for closed U-Pu cycle. Na³⁷Cl salt has one of the best performance and can be used also in breed-and-burn cycle (or Th-U closed cycle).

Other moderators than graphite needs cladding or coating, which can increase neutron capture. Breeding is achievable with 7 LiF-BeF₂ or 7 LiF salts and SiC based cladding for moderators based on Be and D₂O.

Hard spectrum of chlorides provides neutron excess and U-Pu breeding can be achieved also in reactors with dedicated coolant and separation material in the core. **Na**³⁷**CI** salt could be needed to compensate the other neutron losses.

02.11.2025



Fuel cycle

13 02.11.2025

MSR fuel cycle choices and options

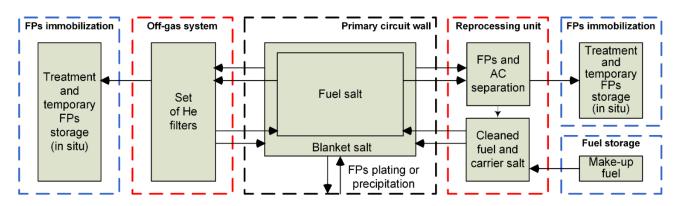
- The carrier salt (liquid fuel solvent) is an ionic liquid and can be irradiated without a limit.
- No matter the fuel cycle, it is always good to keep actinides as long as possible in the reactor (high burnup).
- At best only Fission Products (FPs) should leave the core.
- Unfortunately, FPs (Lanthanides) tends to leave the fuel salt as last.
- In any fuel cycle, core with higher actinides load could be designed as smaller.
- Actinides density collides with salt melting temperature and potentially also with solubility limits (solidus liquidus temperature gap?).
- Concept capable to operate in Breed-and-burn cycle can be also designed as breeder, converter or burner.
- Concept designed as burner or converter are not necessarily capable of breeding or breed-and-burn operation mode.

Salts reprocessing method

Fuel salts components:

- 1. Carrier salt (LiF, NaCl,...)
- 2. Fertile actinides (232Th and 238U).
- 3. Fissile actinides (²³³U and ²³⁹Pu).
- 4. Minor actinides (MA).
- 5. FPs.

Salt treatment / reprocessing techniques:

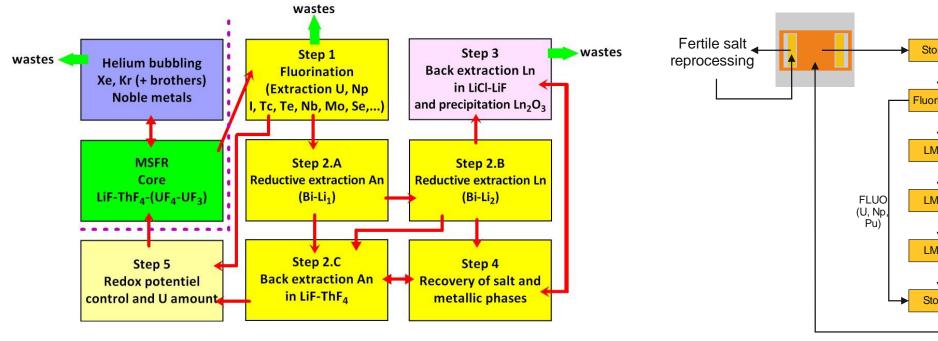

- Gaseous and volatile FPs removal (off-gas system).
- Metallic FPs removal (sponge filter or by off-gas sys.).
- Molten salt / liquid metal reductive extraction.
- Electro-separation processes.
- Compound evaporation or possibly precipitation.
- Fluoride volatilization techniques,
 fluorination of the molten salt mixture.

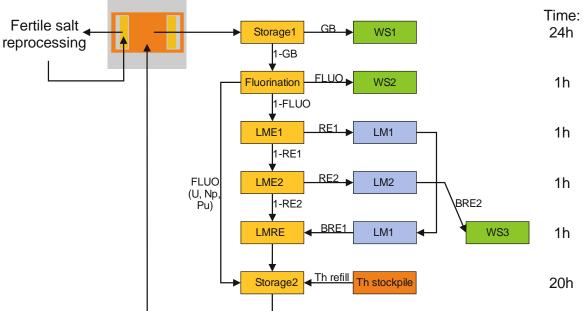
Salt removal from the core	Removed salt share	Fissile fuel recycling	Fissile fuel return after reprocessing	Carrier salt cleaning	Carrier salt return after reprocessing	Reprocessing waste immobilization
Continuous or Batch-wise	From 0.1% to whole salt volume	In-situ or Ex-situ	ASAP or with months or years of delay	In-situ or Ex-situ	ASAP or with months or years of delay	In-situ or Ex-situ

FPs mass evolution in MSFR systems

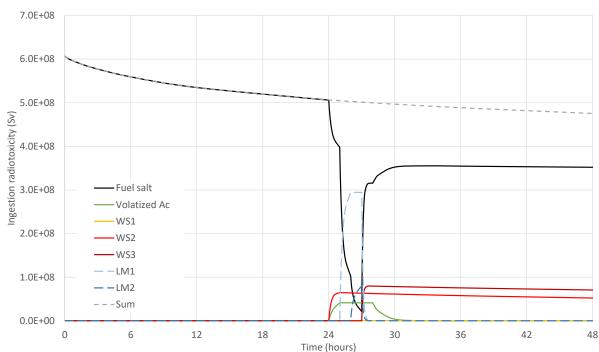
) PSI

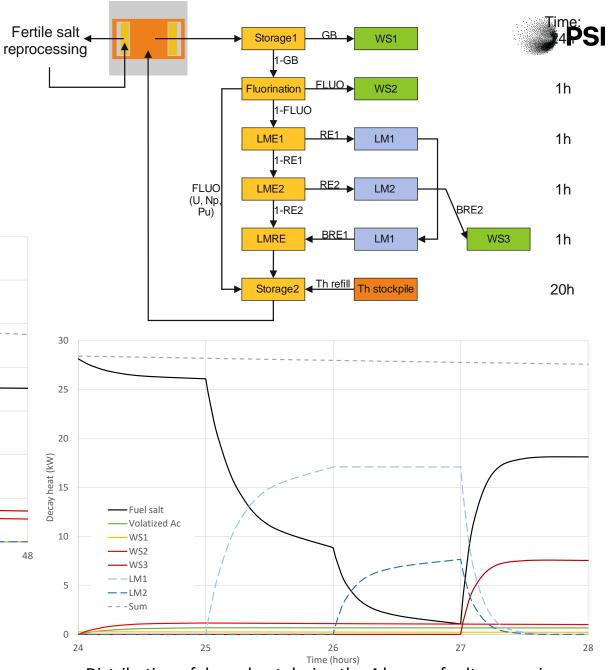
Top 15 decay chains (the same A) according to ingestion radiotoxicity. The off-gas system dominates in many cases.




Rank	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Atomic number	233	131	90	137	140	133	144	91	132	89	143	97	95	93	141
Nuclides	233Th 233Pa	131Cd 131In 131Sn 131Sb 131Te-m 131Te 131I 131Xe-m	90Se 90Br 90Kr 90Rb-m 90Rb 90Sr 90Y	137Sn 137Sb 137Te 137I 137Xe 137Cs 137Ba-m	140Te 140I 140Xe 140Cs 140Ba 140La	133In 133Sn 133Sb 133Te-m 133Te 133Xe-m 133Xe-m	144Xe 144Cs 144Ba 144La 144Ce 144Pr-m 144Pr 144Nd	91Se 91Br 91Kr 91Rb 91Sr 91Y	132In 132Sn 132Sb-m 132Sb 132Te 132I 132Xe 132Cs	89As 89Se 89Br 89Kr 89Rb 89Sr 89Y-m	143Xe 143Cs 143Ba 143La 143Ce 143Pr 143Nd	97Kr 97Rb 97Sr 97Y 97Zr 97Nb-m 97Nb	95Kr 95Rb 95Sr 95Y 95Zr 95Nb-m 95Nb 95Mo	93Br 93Kr 93Rb 93Sr 93Y 93Zr 93Nb-m	141I 141Xe 141Cs 141Ba 141La 141Ce
Half-lives	22m 27d	0.106s 0.28s 39s 23.0m 1.35d 25.0m 8.040d 11.9d	0.427s 1.9s 32.3s 4.3m 2.6m 29.1y 2.67d	0.478s 2.5s 24.5s 3.82m 30.17y 2.552m	0.894s 0.86s 13.6s 1.06m 12.75d 1.678d	0.18s 1.44s 2.5m 55.4m 12.4m 20.8h 2.19d 5.243d	1.2s 1.01s 11.4s 40.7s 284.6d 7.2m 17.28m 15.32l	0.27s 0.54s 8.6s 58.0s 9.5h 58.5d	0.20s 40s 2.8m 4.2m 3.26d 2.28h stable 6.475d	0.121s 0.41s 4.37s 3.15m 15.4m 50.52d 15.7s	0.30s 1.78s 14.3s 14.1m 1.38d 13.57d stable	0.1s 0.169s 0.42s 3.76s 16.8h 58.1s 1.23h	0.78s 0.377s 25.1s 10.3m 64.02d 3.61d 34.97d stable	0.176s 1.29s 5.85s 7.4m 10.2h 1.5e6y 12y	0.45s 1.72s 24.9s 18.3m 3.90h 32.50d
Total ingestion radiotoxicity (Sv)	9.2E+10	7.7E+10	7.3E+10	3.0E+10	2.8E+10	2.5E+10	2.4E+10	1.9E+10	1.8E+10	1.6E+10	1.3E+10	1.1E+10	9.5E+09	7.9E+09	6.9E+09
Off-gas system (%)	0.0	67.0	38.3	82.1	11.0	37.7	0.0	9.6	98.6	75.4	0.0	89.5	97.2	0.2	0.6
Fuel in core (%)	90.7	32.1	20.6	2.1	88.1	61.9	66.2	87.7	1.4	23.8	98.2	10.5	2.8	99.4	95.7
Reprocessing unit (%)	0.1	8.0	40.9	15.8	0.5	0.2	33.4	2.3	0.0	8.0	1.4	0.0	0.0	0.0	3.4
Fuel in blanket (%)	9.2	0.1	0.2	0.1	0.3	0.2	0.4	0.3	0.0	0.1	0.4	0.0	0.0	0.4	0.4

Reprocessing scheme of MSFR fuel salt


(chemical versus physical perspective)



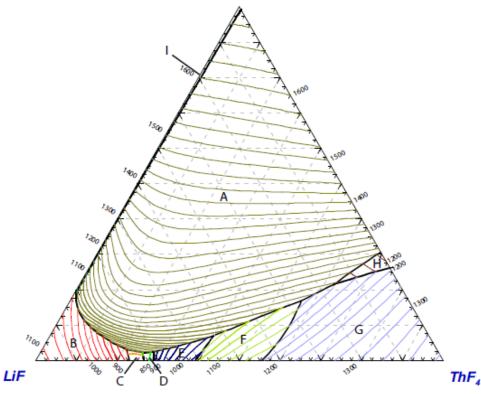
FPs mass evolution in reprocessing systems

Decay heat and radiotoxicity distribution in the MSFR reprocessing system.

Distribution of ingestion radiotoxicity during the 48 hours of salt residence time in reprocessing unit.

Distribution of decay heat during the 4 hours of salt processing.

Actinides content versus liquidus temperature

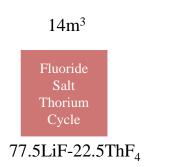

19 02.11.2025

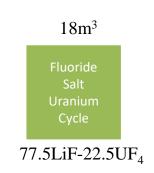
Reasonable temperature window for operation: interval between salt melting and structural materials failure

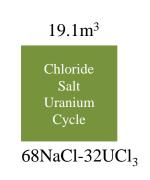
Typically eutectic mixture of carrier salts (LiF, BeF₂, NaF, LiCl, NaCl,...)
 and actinides salts (ThF₄, UF₄, PuF₃, PuCl₃, UCl₃, ThCl₄,...)

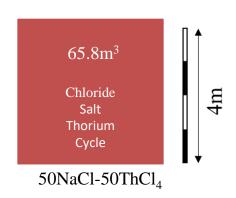
- MSRE salt, T_{melt.}=432°C
 65%LiF 29.1BeF₂ 5%ZrF₄ 0.9%UF₄
- o MSBR, Th-U equilibrium cycle, $T_{melt.}$ =500°C 71.7%LiF 16%BeF₂ 12%ThF₄ 0.3%UF₄
- o MSFR, Th-U equilibrium cycle, $T_{melt.}$ =560°C 78%LiF 17.6%ThF₄ 4%UF₄ 0.2%PuF₃
- o MSFR, Pu started Th-U cycle, $T_{melt.}$ =625°C 78%LiF 16%ThF₄ 6%PuF₃
- MCFR, Pu started U-Pu cycle, T_{melt.}=565°C
 60%NaCl 35%UCl₃ 5%PuCl₃
- MCFR, Pu started Th-U cycle, T_{melt.}=425°C
 55%NaCl 39%ThCl₄ 6%PuCl₃
- Generally solubility limits (e.g. PuF₃) and actinides density compete with melting temperature.

PuF₃

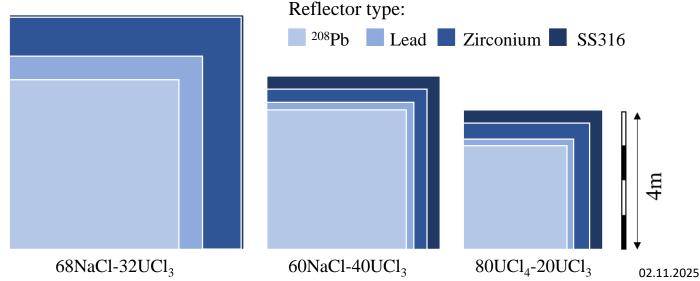

LiF-ThF₄-PuF₃ ternary phase diagram w/ fixed 1% mol UF₄ concentration


E. CAPELLI et al., "Thermodynamic Assessment of the LiF–ThF4–PuF3–UF4 System," J. Nucl. Mater., **462**, 43 (2015).

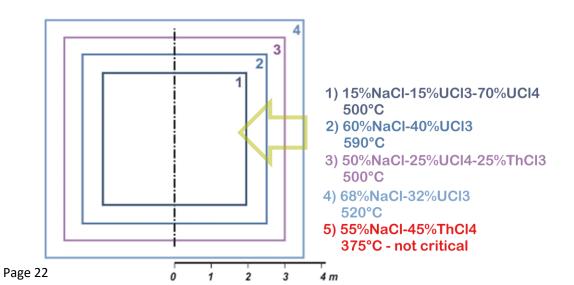

Core size comparison for closed and open B&B cycle

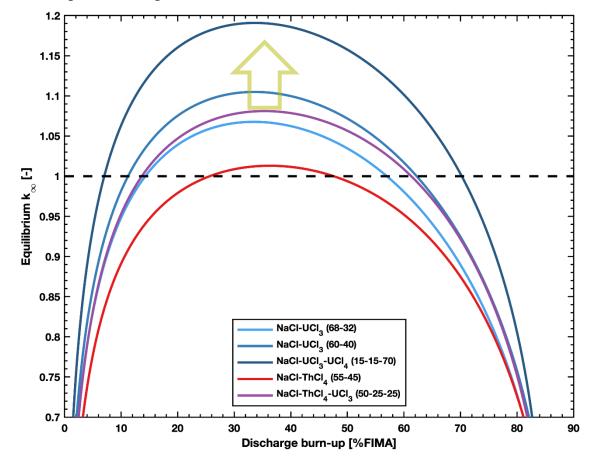


Closed cycle



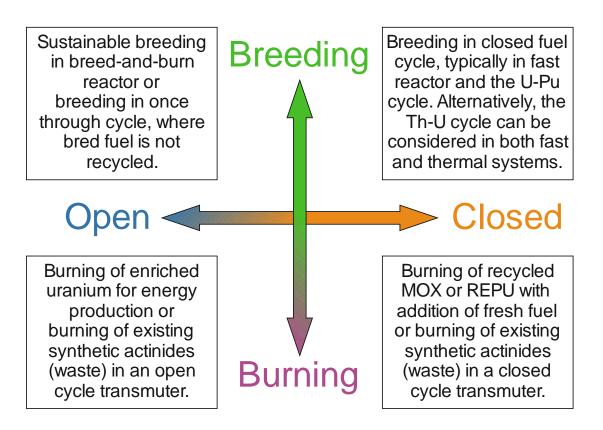
Critical core sizes





Self-sustaining breeder in open cycle (B&B)

- B&B is practically not possible in Th-U cycle.
- It is only possible in mixed
 U-Pu & Th-U cycle.
- B&B cores are bulky (chlorides = hard spectrum, but also high Migration area).
- The performance increases with growing actinides share in the core.


There exist **temperature window** for MSR operation determined by:

- 1. Salt liquidus temperature
- 2. Material structural integrity

02.11.2025

Two independent crosses for salt classification

Well moderated concepts relying on enriched uranium or LWR-Pu and Th-232.

Low FPs molar share.

Cores with low fissile material load.

Typically, well moderated concepts or experiments.

Low FPs molar share.

Fast breeders and breed-and-burn concepts.

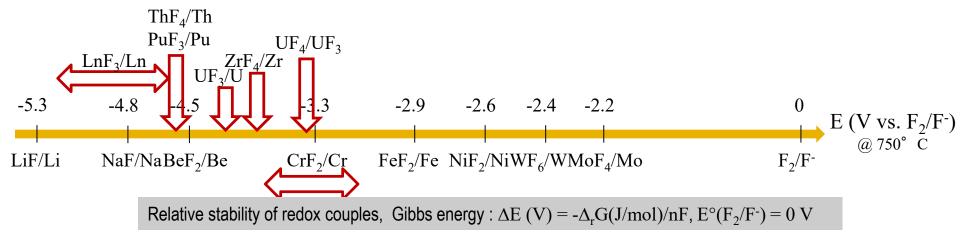
FPs molar share could be high.

Burners.

FPs molar share could be high.

Actinides fissile share

23 02.11.2025

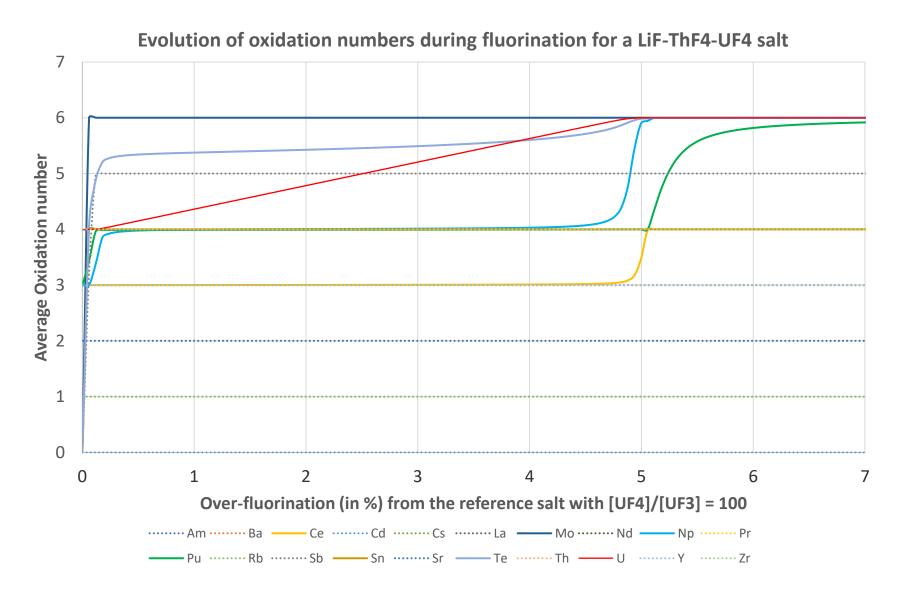

Salt redox (&reprocessing) versus source term retention retention

24 02.11.2025

Redox window for operation

- Similarly, like the temperature window for MSR, there is Redox window.
- It is determined by salt species reduction on one side and structural materials and salt species oxidation on the other side.
- Redox control is important for limiting the structural materials corrosion.
- It is also important in accidental conditions to limit the source term mobility.

Adopted from: Laurent Cassayre, LGC.CNRS.FR, Corrosion in molten salt reactors, EVOL Winter School, 4-6 November 2013, IPNO, France


Redox window: volatilization

Redox window:						No data	gaz	solid	salt	liquid								He(g)
		BeF2											BF3(g)	C(-IV)	N2(g)	O(-II)	F(-I)	Ne(g)
olatilization	NaF	MgF2											AIF3	SiF4(g)	PF3(g)	S2(g)	Cl(-I)	Ar(g)
 Speciation of 	KF	CaF2	ScF3	TiF3	VF2	CrF2	MnF2	FeF2	Co(s)	Ni(s)	Cu(s)	Zn(I)	Ga(I)	Ge(I)	As4(g)	Se2(g)	Br(-I)	Kr(g)
elements	RbF	SrF2	YF3	ZrF4	Nb(s)	Mo(s)	Tc(s)	Ru(s)	Rh(s)	Pd(s)	Ag(I)	Cd(I)	In(l)	Sn(I)	Sb(I)	Te(I)	I(-I)	Xe(g)
in the core for	CsF	BaF2	LaF3	HfF3	Ta(s)	W(s)	Re(s)	Os(s)	Ir(s)	Pt(s)	Au(s)	Hg(s)	Tl(s)	Pb(I)	Bi(I)	Po(l)	At2(g)	Rn(g)
$UF_4/UF_3 \in [10, 100]$	FrF	RaF4	AcF3															
$E(V) \in [-3.44, -3.24]$				CeF3	PrF3	NdF3	PmF3	SmF3	EuF3	GdF3	TbF3	DyF3	HoF3	ErF3	TmF3	YbF3	LuF3	
				ThF4	PaF4	UF4-UF3	NpF3	PuF3	AmF3	CmF3	BkF3	CfF3	EsF3	FmF3	MdF3	NoF3	LrF3	
	HF(g)					No data	gaz	solid	salt	liquid	fluorinated							He(g)
	LiF	BeF2											BF3(g)	CF4(g)	N2(g)	O(-II)	F2(g)	Ne(g)
 Speciation of 	NaF	MgF2											AIF3	SIF4(g)	PF5(g)	SF6(g)	Cl(-I)	Ar(g)
elements	KF	CaF2	ScF3	TiF4(g)	VF4(g)	CrF6(g)	MnF4(g)	FeF2(g)	CoF3	NiF2	CuF2	ZnF2	GaF3(g)	GeF4(g)	AsF5(g)	SeF6(g)	BrF5(g)	Kr(g)
in the volatilization unit.	RbF	SrF2	YF3	ZrF4	NbF5(g)	MoF6(g)	TcF6(g)	RuF5(g)	RhF4(g)	PdF3(g)	AgF(g)	CdF2	InF3	SnF4(g)	SbF5(g)	TeF6(g)	IF5(g)	Xe(g)
ariic.	CsF	BaF2	LaF3	HfF4	TaF5(g)	WF6(g)	ReF7(g)	OsF6(g)	IrF4(g)	PtF4(g)	AuF3	HgF2(g)	TlF3	PbF4(g)	BiF3(g)	PoFx	At2(g)	Rn(g)
	FrF	RaF4	AcF3															
				CeF4(g)	PrF3	NdF3	PmF3	SmF3	EuF3	GdF3	TbF3	DyF3	HoF3	ErF3	TmF3	YbF3	LuF3	
Page 26				ThF4	PaF4	UF6(g)	NpF6(g)	PuF6(g)	AmF3	CmF3	BkF3	CfF3	EsF3	FmF3	MdF3	NoF3	LrF3	
Alexis de Villepin, Internship Report, PSI, 2024																		

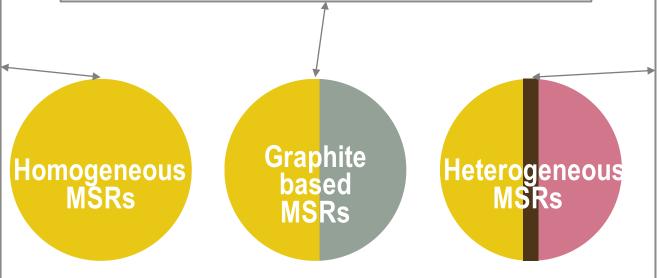
Redox window: volatilization

 Evolution of the oxidation number of the nuclides during fluorination

Summary

- High salt density (actinides molar share) can result in smaller reactor cores.
- It however compete with liquidus temperature.
- Density is thus limited to ranges close to eutectic composition.
- There exist temperature design window between liquidus temperature and material structural integrity.
- There exist redox design window between salt species reduction and structural material oxidation.
- Redox change can be used as separation technique.
- Reprocessing strategy during nominal operation influences source term during accident.

Thank you


Jiri Krepel, Sergii Nichenko, Mateusz Malicki, Alexis de Villepin 21 July – 25 July 2025, IAEA, Vienna

IAEA MSR Taxonomy: basic features

- Fluoride or Chloride salts acting as fuel and coolant.
- Fast spectrum
 (epithermal with Be)
- Chlorides:
 U-Pu, hard spectrum,
 transparent for neutrons.
- Fluorides:
 Th-U, softer spectrum,
 scattering neutrons.
- F and Cl mixture or other salts/halides usually not considered.
- Regular vessel replacement.

- Fluoride salt. (high Cl neutron captures)
- Possibility of Th-U cycle. (demanding, fast fuel cleaning needed)
- LEU fuel cycle.
- In case of solid fuel embedded in graphite, only moderating salts, like LiF-BeF₂, provides negative density effect.
- Regular graphite replacement.

- Parasitic neutron capture of separating material. (composites?)
- Material choice determines breeding capability.
- Fluoride salt for moderated systems.
 (high Cl neutron captures)
- Chloride salts for fast systems.

(reactivity excess needed)

- In case of two liquids, cooling can be distributed.
- Regular structural material replacement.

30 02.11.2025

Past concepts

Core

Reflector

Blanket

1952

Fluoride salt cooled reactors

I. 2. Graphite moderated MSRs

6

II. 3. Homogeneous fluoride fast MSRs Homogeneous chloride fast

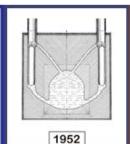
II. 4.

9

Non-graphite moderated MSRs

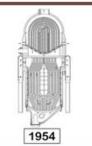
3

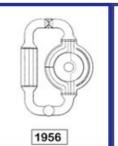
III. 6. Heterogeneous chloride fast **MSRs**


2

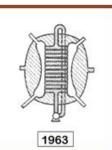
IV. Other MSRs

10

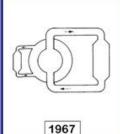


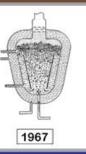


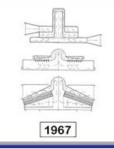
1954

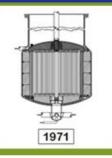


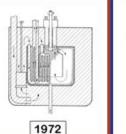
4

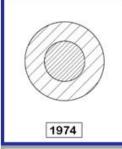


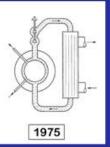


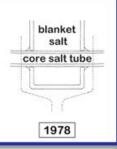


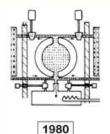


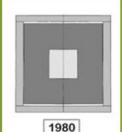


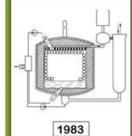


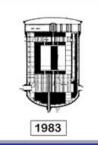


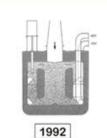


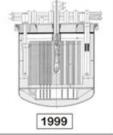


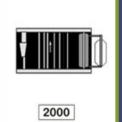


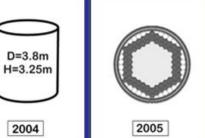







2004





Recent concepts

I. 1. Fluoride salt cooled reactors

3

I. 2. Graphite moderated MSRs

6

II. 3.
Homogeneous fluoride fast MSRs

II. 4.
Homogeneous chloride fast MSRs

3

5

III. 5. Non-graphite moderated MSRs

4

III. 6. Heterogeneous chloride fast MSRs

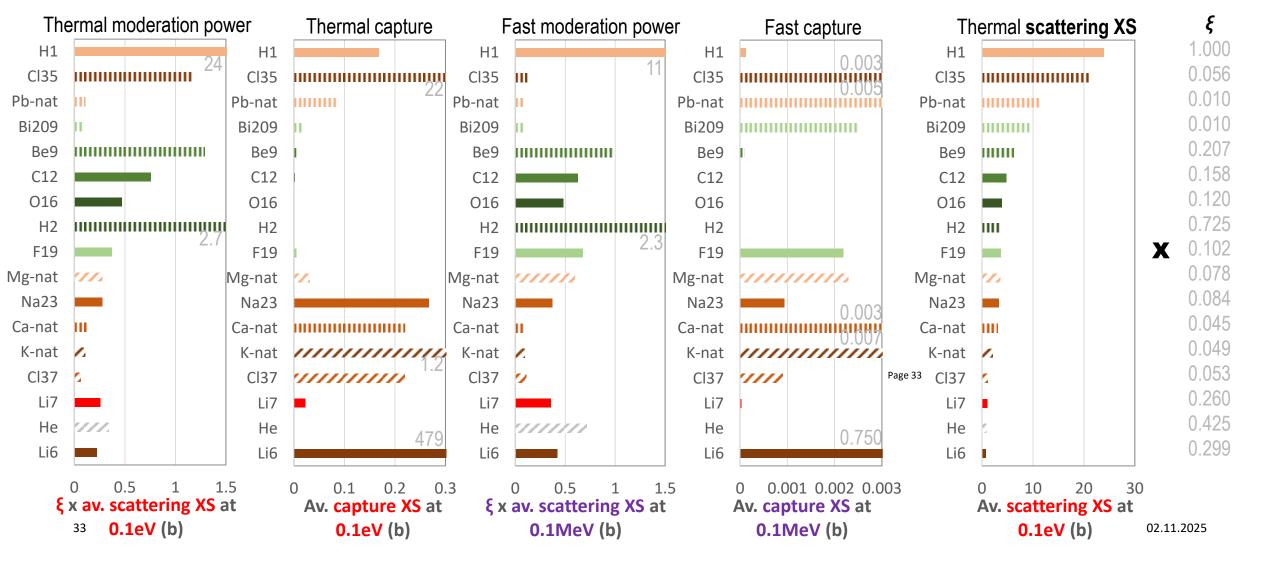
4

IV. Other MSRs

0

Number of concepts (2010-2020):

2010		Salt cooled reactor with fixed fuel nceptual Design of a Small Modular Fluoride Salt-Cooled High	AHTR, SmAHTR Temperature Reactor (SmAHTR), Rep. ORNL/TM-2010/199, Oak f	ORNL Ridge Natl Lab., TN (2010).	2016		Fluoride fast Pu-fuelled reactor ZU, Y., Operation Control of Molten Salt U-Pu Fast Breeder Reactor,	Molten Salt Fast Breeder Reactor (MSFBR) Proc. 2016 Int. Congr. Advances in Nuclear Power Plants (ICAPP 2016),	Hirose et al. San Francisco, CA (2016).
2011		Two-fluids Th-U breeder on Technology Innovation: Technology Assessment of a Molten	LFTR 1 Salt Reactor Design, The Liquid-Fluoride Thorium Reactor (LFTR		2016		Salt cooled reactor with pebble bed fuel ary of the Mark-I Pebble-Bed, Fluoride salt-cooled, High-lemperatur	PB-FHR, KP-FHR re Reactor commercial power plant, Nucl. Technol. 195 3 (2016) 223-238.	UCB, Kairos Power
2013		Solid moderator heterogeneous MSRs clear Reactors and Related Methods and Apparatus, U.S. Pate		Transatomic Power	2016		Heterogeneous salt cooled fast MSRs eutronic Feasibility of a Breed & Burn Molten Salt Reactor, Serpent (SSR-B&B User Group Mtg 2016, Milan (2016).	Kasam and Shwageraus
2013		Single-fluid Th-U breeder of TMSR in China, Molten Salt Reactor Workshop, Paul Schei	TMSR rrer Institut, Switzerland (2017), https://www.gen-4.org/gif/jcms/c_8	SINAP 2829/workshops	2017		Chloride fast breed-and-burn reactor le Salt Fast Reactor (MCSFR)", presented at 8th Thorium Energy Alli	Molten Chloride Salt Fast Reactor (MCSFR) iance Conf., St. Louis, MO, 2017.	Elysium Industries
2013		Uranium converters and other concepts exibility of Terrestrial Energy's Integral Molten Salt Reactor (IM	IMSR (SR®)" 38th Annual Conf. of the Canadian Nuclear Society, Saskat	Terrestrial Energy	2017		Liquid moderator heterogeneous MSRs alt Reactor, AWA Denmark patent WO2018229265, PCT/EP2018/06	CMSR 55989, Copenhagen (2018).	Seaborg Technologies
2014		Heterogeneous salt cooled fast MSRs eactor Design Concept, Thorium Energy Conf. 2015 (ThEC15),	SSR-W300 , Mumbai, India (2015).	Moltex	2017		Two-fluids Th-U breeder ", Molten Salt Reactors and Thorium Energy (DOLAN, T.J., Ed.), Wo	SSR-Th* vodhead Publishing, Duxford, UK (2017) Ch. 21.	Moltex
2015		Liquid moderator heterogeneous MSRs gh of the Copenhagen Atomics Waste Burner design, Proc. Int.	Copenhagen Atomics Waste Burner Thorium Energy Conference, Mumbai, India (2015).	Copenhagen Atomics	2017		Uranium converters and other concepts ", Molten Salt Reactors and Thorium Energy (DOLAN, T.J., Ed.), Wo	SSR-U* nodhead Publishing, Duxford, UK (2017) Ch. 21.	Moltex
2015		Chloride fast breed-and-burn reactor el cycle analysis of a mollen salt reactor for breed-and-burn m	B&B MCFR ode", ICAPP 2015, Nice, France, 2015	Hombourger et al.	2018		Heterogeneous lead cooled fast MSRs Reactor http://www.thoriumenergyworld.com/uploads/6/9/8/7/69878	HSR 937/aristos_power_thec18_slides.pdf	Aristos power
2015			MCFR In Molten Salt Reactor Technologies, Oak Ridge Natt Lab., TN (201	TerraPower	2019		Liquid moderator heterogeneous MSRs a molten salt reactor moderated by heavy water, Ann. Nucl. Energy 1	HW-MSR 132 (2019) 391-403.	SINAP
2015		Fluoride fast Th-U breeder ual design of Indian molten salt breeder reactor, PRAMANA - J	IMSBR J. Phys. 85 3 (2015) 539-554.	BARC	2019		Salt cooled reactor with fixed fuel	AGR-FHR Gas-Cooled Reactor (AGR) refueling technology and decay heat removal s	Forsberg systems that prevent salt freezing, Nucl.
2015		Fluoride fast Pu-fuelled reactor , A., PONOMAREV, L., Molten salt fast reactor with U-Pu fuel o	FMSR cycle, Prog. Nucl. Energ. 82 (2015) 33-36.	VNIINM	2020		Chloride fast breed-and-burn reactor	B&B MCFR in multizone	Raffuzzi and Krepel
2015		Uranium converters and other concepts actor", Molten Salt Reactor and Thorium Energy (DOLAN, T.J.,		ThorCon		Cambridge (2020) 1185.	ation of breed and burn fuel cycle operation of Molten Salt Reactor is Chloride fast breed-and-burn reactor	n balch-wise refueling mode", Proc. Physics of Reactors (PHYSOR) 2020 B&B MCFR with baffles for flow direction	, Cambridge, UK, Nuclear Energy Group, De Oliveira
2015	III. Class 6. Family	Heterogeneous lead cooled fast MSRs Reactor - A novel concept for a fast nuclear reactor of high el	DFR	IFK Berlin	2020			cs of Reactors (PHYSOR) 2020, Cambridge, UK, Nuclear Energy Group, C	


Neutronics properties: Moderation power and capture XS

Logarithmic decrement of energy ξ describes neutron energy loss by scattering.

Product of ξ and scattering XS is used here as a moderation power* criteria.

It is not a standard definition because it uses microscopic instead of macroscopic XS.

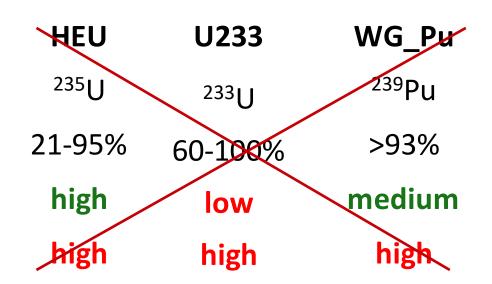
Actinides content versus liquidus-solidus temperatures gap

Transition to closed Th-U and U-Pu cycle

34 02.11.2025

5 major fissile materials to start the Th-U cycle

Material


Fissile isotope(s)

Fissile isotope share

"Availability"

Proliferation risk

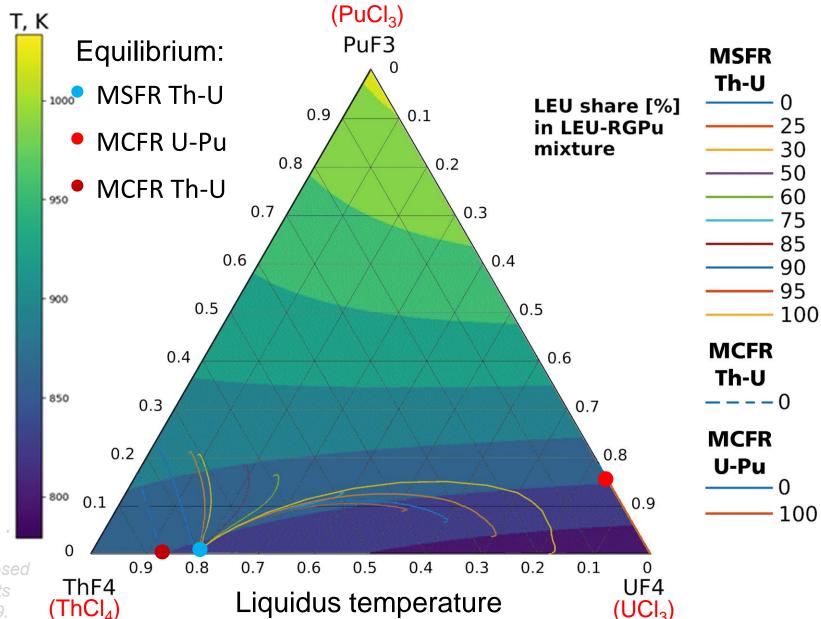
RG_Pu	LEU
²³⁹ Pu, ²⁴¹ Pu	²³⁵ U
~60%	1-20%
medium	high
medium	medium

Page 35

RG Pu and LEU as initial fuel load

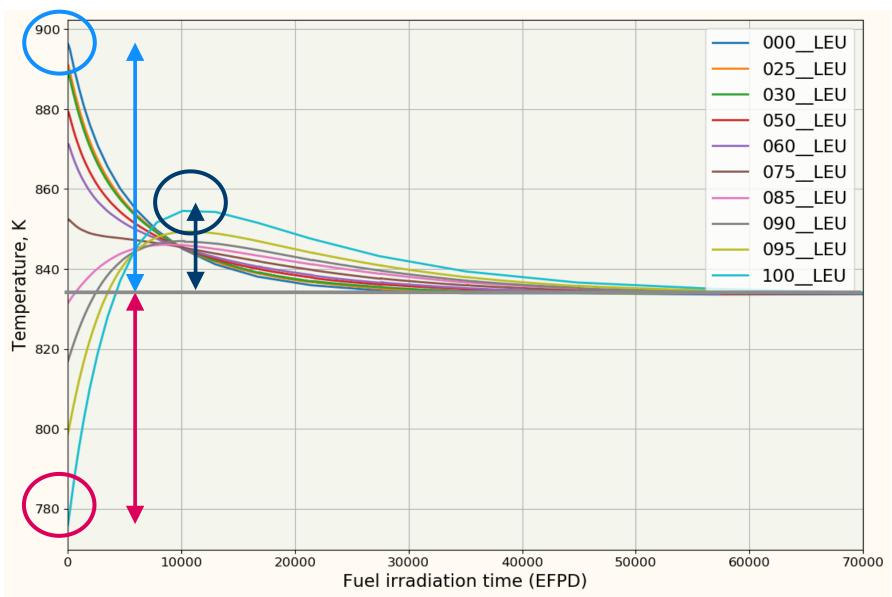
Both RG_Pu and LEU are very natural option to start the U-Pu cycle.

Fuel composition - initial cycles (10% ²³⁵U equivalent)


Starting Th-U cycle with LEU induces ²³⁸U presence in the core.

- Starting Th-U cycle with RG_Pu, LEU or their mixture introduces strong perturbation.
- Pu and ²³⁵ & ²³⁸U are not presented in the salt at equilibrium Th-U cycle.

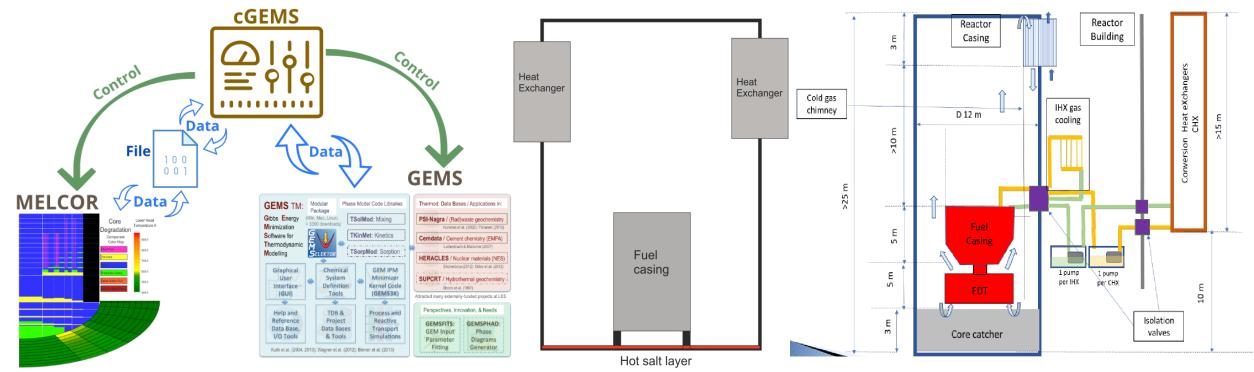
Transition to Th-U cycle in MSFR (and U-Pu MCFR)


Křepel, J. et al., Transition to closed Th-U fuel cycle in fluoride salts based fast MSR. ICAPP 2019.

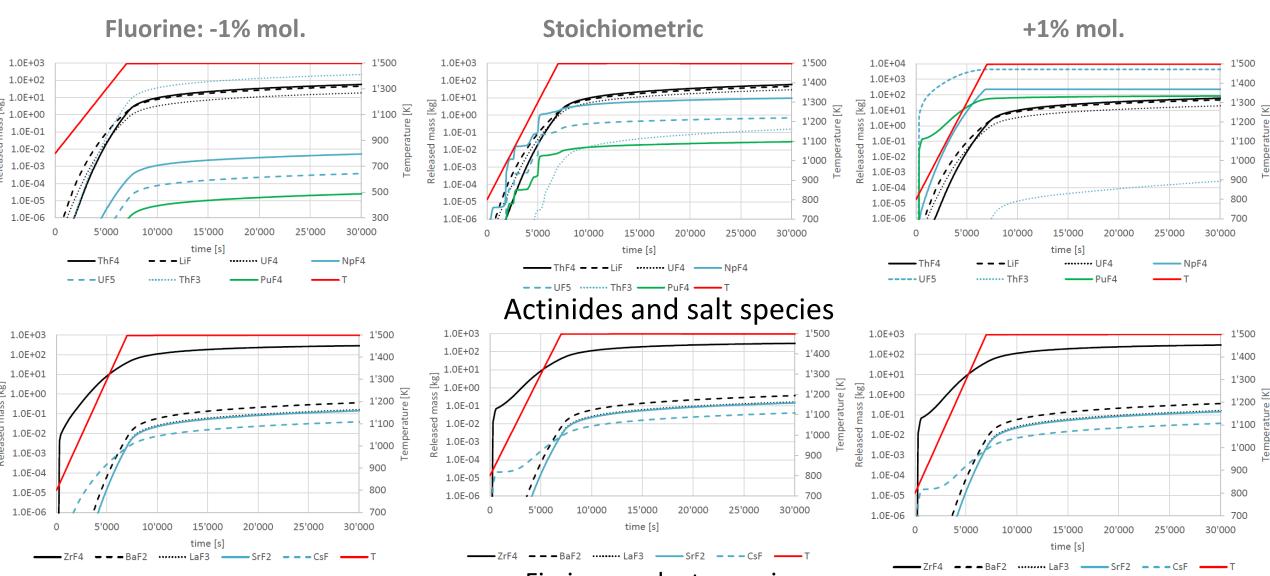
Evolution of the liquidus temperature

- **PuF**₃ presence increases the liquidus temperature.
- UF₄ presence decreases the liquidus temperature.
- The temperature for equilibrium Th-U cycle is cca 835K.
- The difference is:
 up to -55K and
 +60K or +20K.

LiF-ThF4-UF4-PuF3 (at **76.6%** LiF).

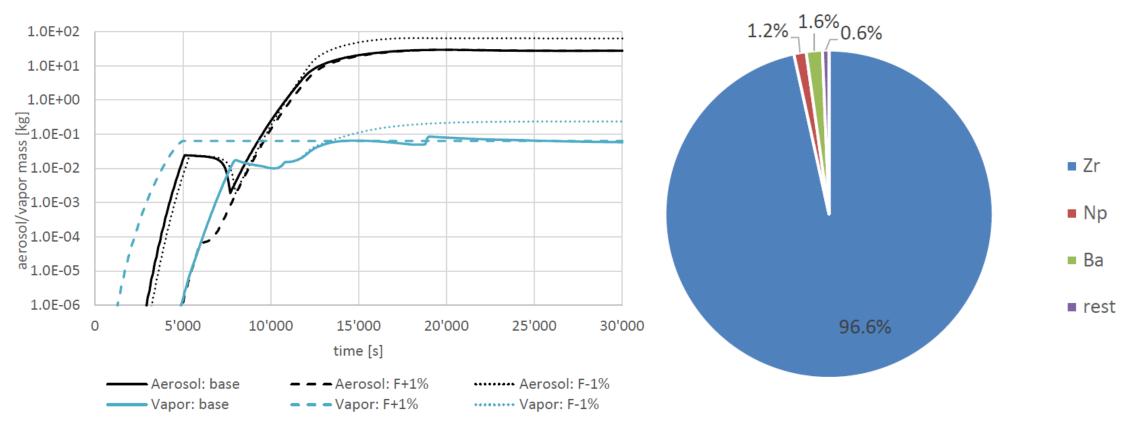

cGEMS application to severe accident in MSFR

Within EU project SAMOSAFER the deliverable: **Aerosols formation and filtration in accidental conditions** was resealed. It is not public, but the results have been also in Journal of Nuclear Materials: J. Kalilainen, S. Nichenko, J. Krepel:


"Evaporation of materials from the molten salt reactor fuel under elevated temperatures" https://doi.org/10.1016/j.jnucmat.2020.152134

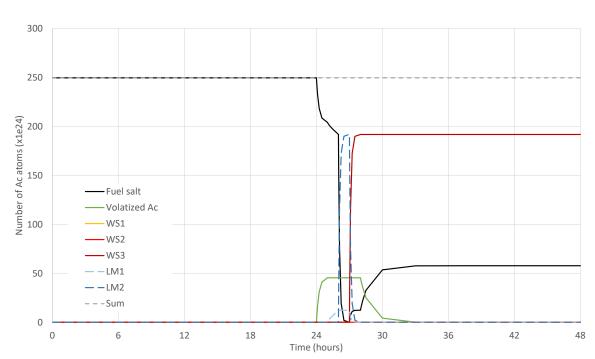
Simple salt spilling scenario in cylindrical containment with salt heat up from 800°C to 1500°C.

Released mass sensitivity to redox

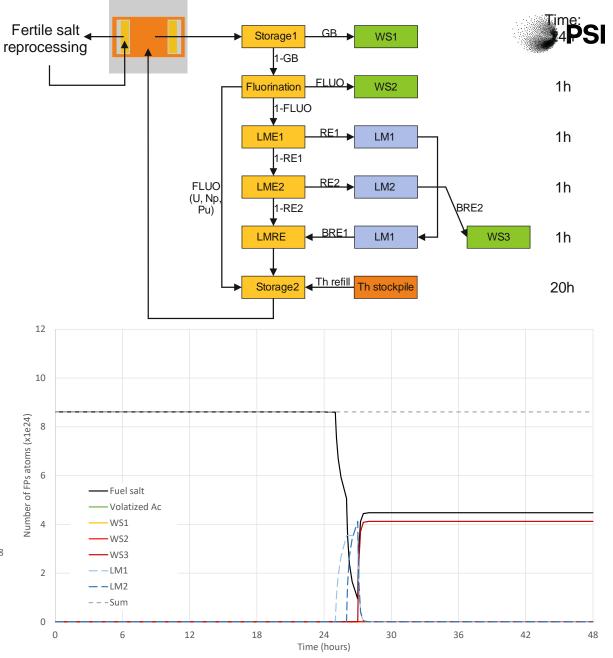


ZrF₄ as the major component?

Based on the applied reprocessing scheme, ZrF₄ in form of aerosols seems to be the major activity carrier during the postulated accident.



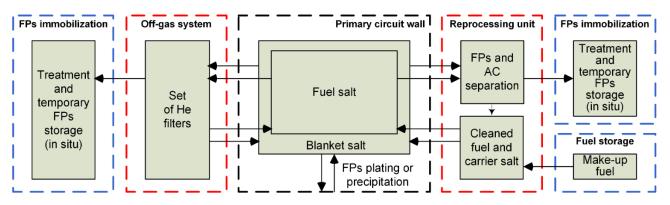
Total released activity in form of aerosols and vapors during the accident (salt heat up from 800°C to 1500°C)

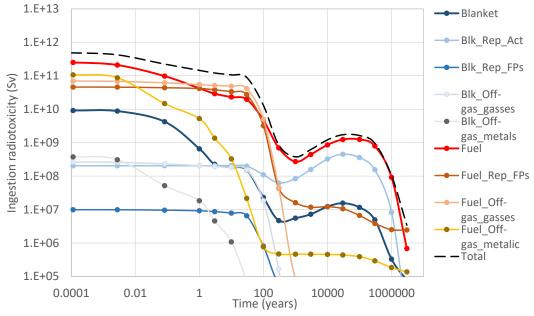

Activity break-down at the end of simulation (t=30'000s) of the accident (salt heat up from 800°C to 1500°C)

FPs mass evolution in reprocessing systems

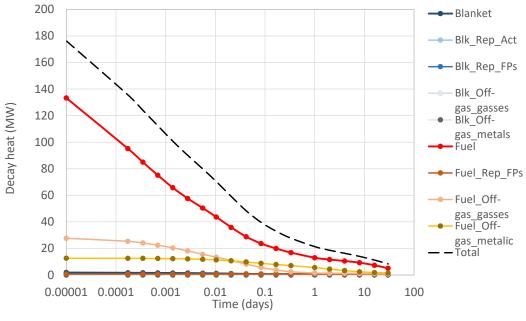
- Ac and FPs flow through the reprocessing unit.
- ► Th fully removed, whereas many FPs only partially.

Distribution of Ac during the 48 hours of salt residence time in in reprocessing unit.




Distribution of FPs during the 48 hours of salt residence time in in reprocessing unit.

FPs mass evolution in MSFR systems


Radiotoxicity and decay heat distribution after 20 EFPY of operation.

Distribution of ingestion radiotoxicity between several locations (Blk. – blanket salt, Fuel – fuel salt, Rep. –reprocessing unit) after 20 FFPY of irradiation.

Distribution of decay heat between several locations (Blk. – blanket salt, Fuel – fuel salt, Rep. –reprocessing unit) after 20 EFPY of irradiation.