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Outline

• Nuclear Data 
• Evaluations and modeling 
• Experimental constraints 
• Challenges in employing experimental NLD in evaluations 
• Propositions to overcome these challenges
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Before we begin… 

… a brief advertisement 
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ENDF/B releases are a key interface in the improvement of the 
nuclear data that reaches the users’ community!

was released Aug 30, 2024!

The previous release (VIII.0) was great, but… 
• Underpredicted depletion at high burnup
• Had deficiencies in leakage benchmarks
• Many other contributions since then

VIII.1 dramatically improves 
depletion performance,…

…performs much better in leakage and 
shielding experiments due to updates in 
Cu, Fe, Cr, Pb,…

…all while further improving the 
performance in criticality 

benchmarks, with updates to 
239Pu, 235,238U, et al.!!

https://www.nndc.bnl.gov/endf-releases/
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End of the ENDF/B-VIII.1 
advertisement



Nuclear Data is the interface between nuclear physics and 
science and technical application that depend nuclear physics

Neutron stars 

FissionS-process

r-process
Nuclear 
forensics

Nuclear energy & non-
proliferation

Thermonuclear 
Fusion
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• Typical neutron incident on non-actinide has ~ 18 
relevant reactions  
• ~ 5 threshold reactions: (n,2n), (n,3n), (n,p), etc. 
• ~ 10 discrete level excitation reactions: (n,n’) for each level 

in residual nucleus 
• 3 non-threshold reactions: (n,tot), (n,el), (n,γ) 

• Actinides add fission, (n,f) 
• For transport studies, need:  

• Cross sections 
• Multiplicities of all emitted particles 
• Outgoing energy-angle distributions for all emitted particles

Evaluated Nuclear Data File: Nuclear reactions

186W(n,x)
Experimental data 

never enough:  need 
theory to fill in gaps

Typical evaluated 
capture cross section

A reaction evaluation is the 
description of everything 
that can happen from the 

nuclear reaction between a 
projectile and a target

RRR: Resolved Resonance Region 
URR: Unresolved Resonance Region 
Fast: Fast-neutron region



Why do we need experiment?

Experiment Transport 
Codes

User
Data 
Processing

BenchmarkingTheory & 
Evaluation

Sensitivity (/Uncertainty) Study

• We do not fully understand the physics  
• We can not theoretically calculate Nuclear Data 

with sufficient accuracy required by applications 
• Experiments constrain the uncertainty of evaluated data  
• Test the accuracy of evaluated files and codes physics 

Slide based on Y. Danon’s WANDA 2020 Pipeline Talk



Theory + Experiment + Statistics = Evaluation
• Experiments rarely cover all that users want 
• Nuclear Theory is needed! 
 - Complete data files for users 
 - Make predictions/extrapolate (beyond calibration) 
 - Provide estimates of uncertainties & correlations 
• Statistics provide the glue 
 - “To the best of our knowledge...”  
     (given time, location, resources) 
 - Bayesian statistics / Uncertainty Quantification

Experiment Transport 
Codes

User
Data 
Processing

BenchmarkingTheory & 
Evaluation

Sensitivity (/Uncertainty) Study

Slide based on P. Talou’s WANDA 2020 Pipeline Talk
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The (mis-)interpretation of what the data is 
actually telling us can also be a challenge.
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gamma measurements
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How about NLD data?
• Models are not perfect: Experimental NLD data are essential to constrain 

models 
• Phenomenological NLD models normally can get the job done, if we 

don’t look too deep in the details 
• Parameter tuning can mask important physics and model deficiencies 
• Microscopic models: less flexible, but more realistic in the details
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• Reduce unknowns  
• Lower evaluated cross section 

uncertainties 
• Help identify improvement needs for 

experiments and theory 
• More consistent predictions, not only in 

general, but in the specifics: 

• correlation between NLD structure 
and neutron spectra 

• inelastic gamma cross sections 
and gamma spectra 

• extrapolation to unstable nuclei 
• etc.

There are many benefits to data-constrained NLD



Examples of impact of NLD details
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Can also impact inelastic gammas!
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Correlations between NLD and cross 
sections for the many reaction channels!

G.P.A. Nobre et al., PRC101 (2020) 034608



NLD experimental methods
• There are many methods and approaches: Oslo method, shape method, etc. 
• WARNING: I’m not an experimentalist, so I won’t dare to go in the details about their 

commonalities, differences and subtleties 
• I will use the Oslo method as an example 

• Successfully measured NLD and GSF data for broad variety of nuclei from primary gammas 
• Website with NLD data and associated publications*
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Normalization: 

Low energy: discrete levels 
Separation energy: resonance spacings 

Things are often not so clear…
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• At low energies, we rely on the experimentally known discrete 

levels
• However, for example:

• Algin’s 2008 paper [1] reporting 56,57Fe NLD measurements 
took information from the 1996 edition of the Table of 
isotopes

• The number of levels (i.e. the NLD) has changed since then!
• Also, spin/parity assignments may have changed
• Poor match between measured levels and NLD models
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Low energy normalization: Discrete levels
• However (2): 

• As excitation energy increases, we start to miss observed levels 
• Cut-off where ALL discrete levels are assumed to be known can be subjective
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Low energy normalization: Discrete levels
• However (2): 

• As excitation energy increases, we start to miss observed levels 
• Cut-off where ALL discrete levels are assumed to be known can be subjective
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Low energy normalization: Discrete levels
• However (2): 

• As excitation energy increases, we start to miss observed levels 
• Cut-off where ALL discrete levels are assumed to be known can be subjective
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Low energy normalization: Discrete levels
• However (2): 

• As excitation energy increases, we start to miss observed levels 
• Cut-off where ALL discrete levels are assumed to be known can be subjective
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Low energy normalization: Discrete levels
• However (2): 

• As excitation energy increases, we start to miss observed levels 
• Cut-off where ALL discrete levels are assumed to be known can be subjective
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Different reasonable, well-
justified choices regarding 

experimental discrete levels can 
lead to very different NLD!



High-energy constraints: 
resonance spacings
• We can use average spacings of s/p/d…-wave resonances 

(D0, D1, D2,…) to constrain NLD for certain spins and parities 
at the neutron separation energy

18

Target 
Nucleus

Compound 
Nucleus

Levels in compound 
nucleus lead to 

resonances: 
correlation to NLD in 

target nucleus!

• That’s not always available (e.g., 56Fe), and then more 
model assumptions have to be introduced 

• When we have them, D0 and D1 are not as well-
defined as one would expect. 

• Atlas is a fantastic resource, but it is far from 
perfect 

• Resonance sequences are filled with spin mis-
assignments, to varying degrees.

G.P.A. Nobre et al., PRC101 (2020) 034608



The Atlas is foundational 
for much of nuclear science
• Comprehensive compilation of neutron 

resonances parameters and 
resonance properties 

• Invaluable reference for resonance 
physics and phenomenology 

• Regarded as “Standard values” for 
much of basic and applied physics

3 essential readings for neutron science:
Atlas, JEFF-18, Lane & Thomas



Behind the scenes, the Atlas production 
hasn’t changed much since the 1970’s
• Atlas electronic files use original BNL-325 

format, adjusted by Said 
• 80 column format 
• “undocumented” 

• Atlas publication formatting tools are 
undocumented and unmaintained 
• Tools build postscript directly from files 

(Did not build latex files) 
• Legacy fortran code psdsply.for 
• Written by BNL retiree Bob Kinsey? 

• Atlas files updated “by hand” 
• Updated using text editor 

• No version control 
• Statistical analysis done with combination 

of codes from EMPIRE (wriurr.f, 
ptanal.f) and SAS analysis package 
(https://www.sas.com) 

• Issues 
• “Compilation not evaluation” 
• Provenance of data - common problem in 

many older compilations 
• Typos galore 
• MLBW vs. RM vs. actual R matrix 
• Comments hiding beyond 80th column or 

hand written scrawl in personal copy



We adopted a multipronged approach to 
understanding the Atlas

1. Document the Atlas electronic file format 
2. Develop simple Atlas API 
3. Typo fixing by students (need statistics) 
4. Match Atlas bibliography to EXFOR/NSR 
5. Mean spacings and capture widths  
6. BRR - tried to get provenance of D, went down rabbit hole
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Extracting the mean resonance spacing 
is surprisingly difficult
• Big Problems: 

• Missing resonances 
• Spingroup missassignments* 
• Resonances from different nuclei altogether 

• State of the art has not advanced much  
• Option #1: Build a cumulative level distribution 

(CLD), fit a line 
• Option #2: Just average the spacings 

• But what spacings should you keep in your 
set?  How will you deal with correlations? Can 
you “add in” (impute) missing resonances?

22

Obvious gaps 
could be imputed

*Foils usage of Δ3 statistic and other RMT-inspired approaches



Implicit correlations: LD of each SG adds 
up to total LD
Implies sumrules: 

 
 
 
 
 
 
 
 
 
 
(these rules couple the 
fit slopes, but the 
intercepts are 
correlated too!)

23



Strange features in real-life CLD’s

24

Mughabghab ignores upturn and gets 
much bigger spacing than we do

This strangeness caused 
by poor statistics in L=1 



More strange features in real-life CLD’s

25
Why the gap?



Our try-everything approach
• Built generative model to test approaches 

• Model used to develop BRR (so can use ML 
to reassign spingroups) 

• Benchmarked variety of regression 
approaches including: GLQR, CGLSR,ODR,  
MC-MC, Quantile Regression 

• Also looked at full Empirical CDF of spacings 
• Generative model needs more real-life 

features 
• Quantile regression is best (most robust 

and statisticians’ favorite) 
• Need multivariate, correlated version

26



Bayesian Resonance Reclassifier

27

…

Synthetic 
data

Real 
resonance 

data

Synthetic data 
(2nd realization)

Validation 
RMF = 80%

Validation 
RMF = 50%

Validation 
RMF = 1%

Training 
RMF = 1%

Training 
RMF = 5%

Training 
RMF = 99%

Random split
Reclassified 

Data

Test

Training 
accuracy

Random 
misassignments

Validation 
accuracy

Reclassified 
real data: 
Prediction

Training event repeated with differing training seeds, obtained 
from the random split between training and testing data

Train

Trained 
Classifier

Evaluated 
data

Reclassified 
Data

These mis-assignments in resonance 
evaluations can potentially impact many 

reactor applications!
• Work done mainly with undergraduate interns 
• Interns presented CEU posters at 2022/2023 DNP Meetings 
• Past interns went on to grad school or staff positions

Sophia Hollick Sergey Scoville Pedro Rodriguez Mary Fucci Sergio Ruiz Charlie Neufeldt Khadim Mbacke

Marcus McLaurin Nicholas Fritsch Ian Snider Ethan Richards Ayman Abdullah-SmootIsaac Broussard Kwame Bennett

• A machine-learning method for resonance spin re-
classification 

• First article on the method has been published in 
FY23 

• It is shaping up to be a great tool to assist in 
resonance evaluations

Frequency of reclassification of resonances in 52Cr

Clusters of consistently  

reclassified resonances



Project goals
• Decide best automated approach to 

compute mean spacings 

• Apply to Atlas of Neutron Resonances 

• Publish to ANDT 

• Keep exploring and expanding BRR 

• Enlist help of summer students
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Bottom line: 

Experimental resonances spacings  
are not as well-known or well-determined 
as would be desired for unequivocally 
pinning NLD measurements!

Dλ

Preliminary



Even if you do have reliable D0 & D1…
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Even if you do have reliable D0 & D1…
• That only constrains the LD at certain spins and parities and 

CANNOT uniquely define the total LD
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Even if you do have reliable D0 & D1…
• That only constrains the LD at certain spins and parities and 

CANNOT uniquely define the total LD
• Very different total LD can agree equally well with Dλ
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Even if you do have reliable D0 & D1…
• That only constrains the LD at certain spins and parities and 

CANNOT uniquely define the total LD
• Very different total LD can agree equally well with Dλ
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Even if you do have reliable D0 & D1…
• That only constrains the LD at certain spins and parities and 

CANNOT uniquely define the total LD
• Very different total LD can agree equally well with Dλ
• So, agreeing with normalized total NLD measured data does not 

necessarily mean agreeing with the actual measurements: 
Dependent on model assumptions!
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Another example…
• Ref. [1] reports great work using Oslo method to measure 56,57Fe 

NLD 
• They make generally reasonable assumptions 
• But how realistic is some of them? 

30[1] A.C. Larsen et al., J. Phys. G: Nucl. Part. Phys. 44 (2017) 064005



Another example…
• Ref. [1] reports great work using Oslo method to measure 56,57Fe 

NLD 
• They make generally reasonable assumptions 
• But how realistic is some of them? 

30[1] A.C. Larsen et al., J. Phys. G: Nucl. Part. Phys. 44 (2017) 064005



31

0 5 10
Excitation Energy U (MeV)

10
0

10
1

10
2

10
3

10
4

L
e

ve
l D

e
n

si
ty

 (
1

/M
e

V
)

Exp. rho(U) = dN/dU

Total GCM

GCM, J
+
 = J

-

Total HFBM

HFB, J
+

HFB, J
-

56
Fe Level Density

S
n
(
56

Fe)



31

0 5 10
Excitation Energy U (MeV)

10
0

10
1

10
2

10
3

10
4

L
e

ve
l D

e
n

si
ty

 (
1

/M
e

V
)

Exp. rho(U) = dN/dU

Total GCM

GCM, J
+
 = J

-

Total HFBM

HFB, J
+

HFB, J
-

56
Fe Level Density

S
n
(
56

Fe)

5 10 15
Excitation Energy U (MeV)

1.0

1.2

1.4

1.6

1.8

2.0

R
a

tio

ρ
HFB

(J
+
) / ρ

HFB
(J

-
)

56
Fe S

n
(
56

Fe)



31

0 5 10
Excitation Energy U (MeV)

10
0

10
1

10
2

10
3

10
4

L
e

ve
l D

e
n

si
ty

 (
1

/M
e

V
)

Exp. rho(U) = dN/dU

Total GCM

GCM, J
+
 = J

-

Total HFBM

HFB, J
+

HFB, J
-

56
Fe Level Density

S
n
(
56

Fe)

5 10 15
Excitation Energy U (MeV)

1.0

1.2

1.4

1.6

1.8

2.0

R
a

tio

ρ
HFB

(J
+
) / ρ

HFB
(J

-
)

56
Fe S

n
(
56

Fe)

~15%



31

0 5 10
Excitation Energy U (MeV)

10
0

10
1

10
2

10
3

10
4

L
e

ve
l D

e
n

si
ty

 (
1

/M
e

V
)

Exp. rho(U) = dN/dU

Total GCM

GCM, J
+
 = J

-

Total HFBM

HFB, J
+

HFB, J
-

56
Fe Level Density

S
n
(
56

Fe)

5 10 15
Excitation Energy U (MeV)

1.0

1.2

1.4

1.6

1.8

2.0

R
a

tio

ρ
HFB

(J
+
) / ρ

HFB
(J

-
)

56
Fe S

n
(
56

Fe)

0 5
Excitation Energy U (MeV)

10
0

10
1

10
2

10
3

10
4

L
e

ve
l D

e
n

si
ty

 (
1

/M
e

V
)

Exp. rho(U) = dN/dU

Total GCM

GCM, J
+
 = J

-

Total HFBM

HFB, J
+

HFB, J
-

57
Fe Level Density

S
n
(
57

Fe)

~15%



31

0 5 10
Excitation Energy U (MeV)

10
0

10
1

10
2

10
3

10
4

L
e

ve
l D

e
n

si
ty

 (
1

/M
e

V
)

Exp. rho(U) = dN/dU

Total GCM

GCM, J
+
 = J

-

Total HFBM

HFB, J
+

HFB, J
-

56
Fe Level Density

S
n
(
56

Fe)

5 10 15
Excitation Energy U (MeV)

1.0

1.2

1.4

1.6

1.8

2.0

R
a

tio

ρ
HFB

(J
+
) / ρ

HFB
(J

-
)

56
Fe S

n
(
56

Fe)

5 10 15 20
Excitation Energy U (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

R
a

tio

ρ
HFB

(J
+
) / ρ

HFB
(J

-
)

57
Fe

S
n
(
57

Fe)

0 5
Excitation Energy U (MeV)

10
0

10
1

10
2

10
3

10
4

L
e

ve
l D

e
n

si
ty

 (
1

/M
e

V
)

Exp. rho(U) = dN/dU

Total GCM

GCM, J
+
 = J

-

Total HFBM

HFB, J
+

HFB, J
-

57
Fe Level Density

S
n
(
57

Fe)

~15%



31

0 5 10
Excitation Energy U (MeV)

10
0

10
1

10
2

10
3

10
4

L
e

ve
l D

e
n

si
ty

 (
1

/M
e

V
)

Exp. rho(U) = dN/dU

Total GCM

GCM, J
+
 = J

-

Total HFBM

HFB, J
+

HFB, J
-

56
Fe Level Density

S
n
(
56

Fe)

5 10 15
Excitation Energy U (MeV)

1.0

1.2

1.4

1.6

1.8

2.0

R
a

tio

ρ
HFB

(J
+
) / ρ

HFB
(J

-
)

56
Fe S

n
(
56

Fe)

5 10 15 20
Excitation Energy U (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

R
a

tio

ρ
HFB

(J
+
) / ρ

HFB
(J

-
)

57
Fe

S
n
(
57

Fe)

0 5
Excitation Energy U (MeV)

10
0

10
1

10
2

10
3

10
4

L
e

ve
l D

e
n

si
ty

 (
1

/M
e

V
)

Exp. rho(U) = dN/dU

Total GCM

GCM, J
+
 = J

-

Total HFBM

HFB, J
+

HFB, J
-

57
Fe Level Density

S
n
(
57

Fe)

~15%

~50%!!



32[1] A.C. Larsen et al., J. Phys. G: Nucl. Part. Phys. 44 (2017) 064005



32[1] A.C. Larsen et al., J. Phys. G: Nucl. Part. Phys. 44 (2017) 064005



32[1] A.C. Larsen et al., J. Phys. G: Nucl. Part. Phys. 44 (2017) 064005



56Fe(n,p) sensitivity to 56Fe lev. den.

▪ Also incredibly sensitive to 56Fe level density. 
▪ Center of experimental LD leads to poor (n,p). 
▪ Tweaks on LD can significantly change (n,p).



56Fe(n,p) sensitivity to 56Fe lev. den.

▪ Also incredibly sensitive to 56Fe level density. 
▪ Center of experimental LD leads to poor (n,p). 
▪ Tweaks on LD can significantly change (n,p).

Searched an old 2017 
slide, where I tried to 

fit HFB NLD to “out-of-
the-box” Oslo data



56Fe(n,p) sensitivity to 56Fe lev. den.

▪ Also incredibly sensitive to 56Fe level density. 
▪ Center of experimental LD leads to poor (n,p). 
▪ Tweaks on LD can significantly change (n,p).

Searched an old 2017 
slide, where I tried to 

fit HFB NLD to “out-of-
the-box” Oslo data



Experimental NLD data
• There are many methods: Oslo, shape, evaporation, etc… 

• Illustrative example: The Oslo method is great! 
• Has producing a large breath of NLD exp data 
• Well-documented: The website (https://www.mn.uio.no/fysikk/english/

research/about/infrastructure/ocl/nuclear-physics-research/compilation/) 
is a great resource for the NLD data and publications 

• The associated publications are very clear about the assumptions made in 
each case 

• They are all very reasonable assumptions! (… in a broad perspective.) 
• However, they should NOT be used in reaction calculations, unless the 

same assumptions are employed!
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