Neutron Spectroscopic Measurement for Studying Nuclear Level Density via Fusion Evaporation Route

Kaushik Banerjee

VECC

30 MeV Medical Cyclotron

K-130 Cyclotron

K-500 Cyclotron

Experimental technique to determine NLD

- (i) Nuclear Level counting
- (ii) Measurement of neutron resonance spacing
- (iii) Analysis of primary gamma ray spectrum using the Oslo method
- (iv) Shape method
- (v) Backward angle particle evaporation spectrum
- (vi) High resolution spectrum from (p,p')

Experimental Nuclear Level Density can be determined from the measured evaporated particle spectrum

$$\rho_{\rm exp}(E) = \rho_{\rm model}(E) \frac{(d\sigma/d\varepsilon)_{\rm exp}}{(d\sigma/d\varepsilon)_{\rm model}}$$

Phys. Rev. C 51, 614 (1995)

$$E = E_{CN}^* - S_n - \varepsilon - E_R$$

Detectors:- Liquid Scintillators(BC501A) for neutrons and BaF₂-array for gamma-ray

Nuclear level density models:

Back Shifted Fermi-gas model : Considering the pairing effect, the tendency that fermions have couple by pair, even odd staggering. Δ and a are the free parameter.

$$\rho(E^*) = \frac{1}{12\sqrt{2}\sigma} \frac{\exp[2\sqrt{a(E^* - \Delta)}]}{a^{1/4}(E^* - \Delta)^{5/4}}$$

Shell Effect in Nuclear Level Density

$$a = \tilde{a} \left[1 + \frac{\Delta S}{U} \{ 1 - exp(-\gamma U) \} \right]$$

$$a = \frac{A}{k} \qquad \qquad \gamma^{-1} = \frac{0.4A^{4/3}}{\tilde{a}}$$

Nuclear Data Sheets 110 (2009) 3107

 ΔS is shell correction, the difference between experimental mass of the nucleus and its liquid drop mass, γ shell damping factor

A. V. Ignatyuk et.al Sov. J. Nucl. Phys. 21, 255 (1975)

Nuclear Level Density using Neutron Evaporation Method

P. Roy et al., Eur. Phys. J. A 57 (2021) 48

Nuclear Level Density using Particle Evaporation Method

Nuclear Level Density using Proton Evaporation Method

A. V. Voinov et al., Phys. Rev. C 99 (2019) 054609

Nuclear Level Density using Proton and Alpha Evaporation Method

Isospin dependence of Nuclear Level Density

Isospin dependent expression -

$$a = \alpha A$$

 $a = \frac{\alpha A}{\exp[\beta (N-Z)^2]}$

Level densities of nuclei off the stability line were lower than those for nearby nuclei on the stability line

$$Z_0 = \frac{0.5042A}{(1+0.0073A^{2/3})}$$

 $a = \frac{\alpha A}{\exp[\gamma (Z - Z_0)^2]}$

 $20 \le A \le 70$ S.I. Al-Quraishi *et al.*, PRC 63, 065803 (2001)

 $20 \le A \le 110$ S.I. Al-Quraishi *et al.*, PRC 67, 015803 (2003)

P. Roy et. al., Phys Rev C 102 (2020) 061601R

NLD in 120 mass region, Reactions studied: ⁴He + ^{112,116,124}Sn \rightarrow ^{115,119,127}Te + n E_{lab} = 26 MeV

R. Shil, K. Banerjee *et al.*, Phys. Lett. B 831, 137145 (2022)

R. Shil, K. Banerjee et al., Phys. Lett. B 831 (2022) 137145

Isospin dependence of NLD in Zn isotopes

Microscopic calculation using EP + IPM model N. Quang Hung Phys. Rev. Lett. 118 (2017) 022502

P. Roy *et al.*, Phys. Lett. B 859 (2024) 139101
A. P. D. Ramirez et. al., Phys. Rev. C 88, 064324 (2013)
D. Soltesz et. al., Phys Rev C 103, 015802 (2021)

Nuclear Level densities in Sn-isotopes

M. Markova et. al., Phys. Rev. C 106, 034322 (2022)

Collective enhancement in Nuclear Level Density

Collective excitation (many-body effect) and its contribution to nuclear level density:

Additional contribution to NLD beyond the independent particle model may come from the collective properties (rotation and/or vibration)

Collective Rotational bands are build on each intrinsic or single-particle state (for a deformed system)

Ignatyuk proposed $\rho(E^*, J)$ can be described as

 $\rho(E^*,J) = \rho_{int}(E^*,J)K_{coll}(E^*)$

 $K_{coll}(E^*) = K_{rot}(E^*)K_{vib}(E^*)$

A. V. Ignatyuk et.al Sov. J. Nucl. Phys. 29, 450 (1979)

Open Problem:

•At what excitation energy does the fadeout of collectivity occur?

•What is the magnitude of the collective enhancement?

•Can these phenomena be determined experimentally?

Enhancement must fade out at higher excitation energies

Bjornholm, Bohr, Mottleson proposed a a critical temperature T_c , beyond which collective contributions in NLD are **expected** to die out due to gradual damping of long range correlations

Hansen and Jensen Nuclear Physics A 406 (1983) 236

A=164

Ex (MeV)

80

Fadeout of collective enhancement

⁴He + ¹⁶⁹Tm->¹⁷³Lu($β_2$ = 0.286) + n ⁴He + ¹⁸¹Ta -> ¹⁸⁵Re ($β_2$ = 0.221) + n ⁴He + ¹⁹⁷Au-> ²⁰¹Tl ($β_2$ = 0.044) + n

K. Banerjee et. al. Phys Lett B 772, (2017) 105

 7 Li + 169 Tm-> 171 Yb (E* = 25.5 -27.5 MeV) [triton transfer] 10^{12} Data 🛏 🛏 10^{10} NR Oslo 🛏 👄 FGM - $(10^{8} \text{MeV}^{-1})^{10^{6}}$ FGM-CE N Solution 10^{2} 4 8 12 16 E_x(MeV) 10^{0} 10 12 14 16 18 8 0 2 6 Δ E_{x} (MeV)

Collective enhancement = 40 ± 3 Fadeout Energy = $14 \pm 1 \text{ MeV}$

Experimental (open squares) and Shell Model Monte Carlo (solid squares) level densities for ¹⁴²⁻¹⁵¹Nd at an excitation energies 2.5, 5 and 7.5 MeV.

Guttornsen et. al. Phys Lett B 816 (2021) 136206

T. Santhosh et. al. Phys Lett B 841 (2023) 137934

Populate d Nucleus	¹⁴² Nd	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁷ Nd	¹⁴⁸ Nd	¹⁴⁹ Nd	¹⁵⁰ Nd	¹⁵¹ Nd	¹⁵² Nd
β_2	0.09	0.11	0.12	0.14	0.15	0.18	0.20	0.25	0.29	0.32	0.35
N-Z	22	23	24	25	26	27	28	29	30	31	32
Z-Z ₀	1.43	1.42	1.41	1.40	1.39	1.38	1.37	1.37	1.36	1.35	1.34

Collective enhancement in Ho-isotopes

- > Measured neutron energy spectra were compared with statistical BSFG model calculation using TALYS-v1.96.
- > Inverse level density parameter (k = $1/\alpha$) was tuned to fit the measured spectra.

> In ⁴He + ¹⁵⁹Tb, parameter α changes from 0.120 MeV⁻¹ to 0.083 MeV⁻¹ with the change in excitation energy.

$$\rho_{exp}(E^*) = \rho_{model}(E^*) \frac{(d\sigma/dE_n)_{exp}}{(d\sigma/dE_n)_{model}}$$

Here,
$$E^* = E^*_{CN} - S^P_n - E_R - E_n$$

 $S^p_n \rightarrow Neutron separation energy of CN.$
 $E_R \rightarrow Rotational kinetic energy.$
 $E_n \rightarrow Neutron kinetic energy.$

Collective Enhancement factor is determined using –

$$\succ K_{exp} = \rho_{exp}(E^*) / \rho_{SP}(E^*)$$

Collective Enhancement factor for ¹⁶²Ho is found to be 114 +/- 43

Global parametrization of NLD parameters

Excitation Energy \sim 8MeV

T. Von Egidy and E. Bucurescu Phys Rev C 72, 044311 (2005)

Global fitting using Bayesian optimization method to determined NLD parameters, a and Δ^{BFG}

NLDs from OSLO and fusion evaporation method was used to determine the NLD parameter $a \ and \Delta^{BFG}$ of the individual nucleus. These parameters were then plotted as a function of mass number A

Validated using experimental D₀ values from RIPL3

Available experimental NLD from fusion evaporation method

Mass region	Reference
⁴⁴ Sc	PRC 77 (2008) 034613
⁴⁷ Ti	PRC 77 (2008) 034613
^{52,54} Mn	PRC 92 (2015) 014303
^{55,57} Fe	PRC 92 (2015) 014303
^{55,57} Co	PRC 92 (2015) 014303
^{59,60,61,62,63,64} Ni	EPJ Web of Conf. 21 (2012) 05001
^{61,67} Zn	PLB 859(2024)139101
^{74,76} Ge	PRC 99 (2019) 054609
^{60,64,66} Zn	PRC 88 (2013) 064324, PRC 103 (2021) 015802
⁹⁰ Zr	PRC 90 (2014) 044303
⁹⁶ Tc	PRC 96 (2017) 054326
^{115,119,127} Te	PLB 831 (2022) 137145

Mass region	Reference
¹⁷¹ Yb	PLB 841 (2023) 137934
¹⁸⁴ Re	PLB 789 (2019) 634
²⁰⁰ TI	PLB 789 (2019) 634
²¹¹ Po	PLB 789 (2019) 634
²¹² At	PLB 789 (2019) 634

Summary and Outlook

The backward-angle neutron evaporation spectrum from (p,n) and (⁴He,n) reactions can be utilized to determine nuclear level densities (NLD) above 8 MeV.

This would aid in benchmarking the calculated nuclear level densities (NLDs) from both microscopic and phenomenological models. It would also be valuable for nuclear reaction codes used to predict (n,n') and (n,2n) reactions.

Experimental Plan Investigate the role of collective enhancement and its fadeout energy in Gd and Hg isotopes

<u>Compilation and evaluation work</u> Compilation and evaluation of NLD from fusion evaporation reaction in the mass region $110 \le A \le 170$ **Collaborators**

P. Roy, P. Pant, R. Shil, A. Chakraborty, S. Kundu, T. K. Rana, T. K. Ghosh, G. Mukherjee, R. Pandey, A. Sen, S. Manna, J. Sadhukhan

Thank You