

Constraining Nuclear Level Densities Using the Shape Method and Related CRP Research Activities

Thibault Laplace, Kgashane L. Malatji, M. Wiedeking Nuclear Science Division mwiedeking@lbl.gov http://nucleardata.berkeley.edu

Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contracts No. DE-AC02-05CH11231 and by the US Nuclear Data Program.

Brief history of the LBNL/UCB Nuclear Data Group

Pu (1951 Nobel)

⁹⁹Tc for Medical Imaging Our roots go back to Seaborg & Isotope Production

To Glenn T. Seaborg

who started and kept alive the series of compilations of which this is the sixth

Next 50 years: group specialized in decay and neutron capture data.

Past 10 years: help develop a national plan to address nuclear data needs for applications.

Filling in the Nuclear Data Gaps

Berkeley Lab researcher tackling common questions that cut across the field of nuclear science

Feature Story Glenn Roberts Jr. 510-486-5582 • DECEMBER 21, 2016

Nuclear data for applications at LBNL/UCB

Nuclear Data Program

Current Funding sources

- DoE Nuclear Data Program
- DoE Isotope Program
- DoE Nuclear Energy
- NIF-STARFIRE
- SSAA
- Nuclear Technology Innovation Laboratory
- Berkeley Atlas
- Nuclear Data Interagency Working Group
 - NA-22 and USNDP
- DARPA
- MIND
 - NA-241 and USNDP
- North Star
- Google Project X

Where we do our measurements

Traineeship funded by US Nuclear Data Program

- Funding (over 4 years)
- 50% for post-doc and 25% Research Engineer
- Goals:
 - Ensure a comprehensive development of two emerging researchers, fostering a robust foundation for future contributions to nuclear data evaluation and management.

Measuring the NLD and PSF

Primaries from charged particle reactions (<S_n) o Oslo, beta-Oslo, inverse Oslo Methods o Shape Method

$$\rho'(E_x - E_\gamma) = A e^{\tilde{\alpha}(E_x - E_\gamma)} \rho(E_x - E_\gamma)$$
$$T'(E_\gamma) = B e^{\tilde{\alpha}(E_\gamma)} T(E_\gamma),$$

A and B are constants and $\boldsymbol{\alpha}$ is a common slope parameter.

The transformation parameters, A and B correspond to physical solutions and are deduced from external experimental data to get the solution.

E(Nal) [keV]

Si ∆E-E telescope

10²

10

Oslo method: Normalization

- Slope:
 - NLD at low E_x: known discrete levels (from NNDC).
 - NLD at S_n: External data from neutron resonance spacing (D₀) assuming a specific spin distribution.
 - PSF : inferred from slope of NLD.
- PSF absolute value
 - average radiative width (Γ_γ) of neutron resonances.

Problem: neutron resonance data only available for A+1n from nearest stable nucleus.

Ingeberg, Jones, Msebi et al., Phys. Rev. C 106 054315 (2022).

- D₀ is not known.
- No standardized approach in absence of D₀.
- Unambiguous identification of origin and destination of primaries.
- Functional form is retained between primaries from same excitation energy bin.
- Concepts from Average Resonance Capture, Ratio, and χ^2 methods.

Primaries from intercepts of diagonals with E_x .

Pair of data points internally normalized and proportional to PSF.

Pair of data points internally normalized and proportional to PSF.

Shape and Sewing Method

- Pair of data points internally normalized and proportional to PSF.
- Average γ energy of the extremes of 2 neighboring pairs.
- 2nd pair scaled by a factor to match 1st pair.
- Logarithmic interpolation.
- Results in functional form of PSF.

Shape Method in practice: ¹⁶⁴Dy

MW, Guttormsen, Larsen et al., Phys. Rev. C 104 014311 (2021).

Limitations of the Shape Method

Shape method applied (probably more):

⁹³Sr: Sweet et al., Phys. Rev. C 109, 054305 (2024). ^{144,145,150}Nd: Guttormsen et al., Phys. Rev. C 106, 034314 (2022).

^{120,124}**Sn**: Markova et al., Phys. Rev. C 106, 034322 (2022).

¹¹²Cd: Goriely et al., Phys Rev C 106, 044315 (2022).

^{96,100}**Mo**: Larsson, Ph.D. thesis, University of Oslo (2023).

¹⁶⁴Dy, ⁵⁶Fe, ⁹²Zr: Wiedeking et al., Phys Rev C 104, 014311 (2021).

¹⁰⁶Cd: Tsewu, ongoing, Ph.D. University of Johannesburg (2025).

⁷⁶Ge, ⁸⁸Kr: Mücher et al. Phys Rev C 107, L011602 (2023).

⁶³Ni: Nkalanga, ongoing, PhD, University of Johannesburg (2025)

¹⁴⁰Ba: Spyrou et al. Phys. Rev. Lett. 132, 202701 (2024).

⁵⁸**Fe**: Abbott et al., Phys. Rev. C 111, 034322 (2025).

earch Activities | BERKELEY LAB

Nd isotopic chain

Comprehensive study on PSF evolution for 9 Nd isotopes with (p,p) and (d,p) reactions. Oslo method, Shape Method, Side Feeding

Insight into spin distribution populated in these light-ion reactions compared to the intrinsic spin

distribution.

Side feeding analysis into rotational gs band up to 10⁺ state NLD reduction factor for (p,p')

$$\eta = \frac{g(S_n, J=0)_{\text{tot}}}{g(S_n, J=0)_{\text{exp}}} = 0.22(2)$$

Guttormsen, Ay, Ozgur et al., Phys. Rev. C 106, 034314 (2022).

Shape Method and Related CRP Research Activities | BERKELEY LAB

Shape Method: ¹⁵⁰Nd

Guttormsen, Ay, Ozgur et al., Phys. Rev. C 106, 034314 (2022).

Shape Method: ¹⁴⁴Nd

Guttormsen, Ay, Ozgur et al., Phys. Rev. C 106, 034314 (2022).

Shape Method: ¹⁴⁵Nd

NLD reduction factor for (d,p') = 0.11(2)

Guttormsen, Ay, Ozgur et al., Phys. Rev. C 106, 034314 (2022).

Shape Method: PSF and NLD away from stability

$$\rho'(E_x - E_\gamma) = Ae^{\tilde{\alpha}(E_x - E_\gamma)}\rho(E_x - E_\gamma)$$
$$T'(E_\gamma) = Be^{\tilde{\alpha}(E_\gamma)}T(E_\gamma),$$

Constraining Nuclear Level Densities Using the Shape Method and Related CRP Research Activities | BERKELEY LAB

Reduction factor and NLD

NLD reduction factor for (d,p') = 0.11(2)

PHYSICAL REVIEW C 106, 034314 (2022)

Evolution of the γ -ray strength function in neodymium isotopes

M. Guttormsen , ^{1,*} K. O. Ay,² M. Ozgur,² E. Algin,^{2,3} A. C. Larsen,¹ F. L. Bello Garrote,¹ H. C. Berg,^{1,+} . Crespo Campo,¹ T. Dahl-Jacobsen,¹ F. W. Furmyr,¹ D. Gjestvang,¹ A. Görgen,¹ T. W. Hagen,¹ V. W. Ingeberg,¹ B. V. Kheswa,^{1,4} I. K. B. Kullmann,⁵ M. Klintefjord,¹ M. Markova,¹ J. E. Midtbø,¹ V. Modamio,¹ W. Paulsen,¹ L. G. Pedersen,¹ T. Renstrøm,¹ E. Sahin,¹ S. Siem,¹ G. M. Tveten,¹ and M. Wiedeking^{6,7}

PHYSICAL REVIEW C 93, 014323 (2016)

Statistical properties of 243 Pu, and 242 Pu (n,γ) cross section calculation

T. A. Laplace,^{1,2,*} F. Zeiser,³ M. Guttormsen,³ A. C. Larsen,³ D. L. Bleuel,¹ L. A. Bernstein,^{1,2,4} B. L. Goldblum,² S. Siem,³ F. L. Bello Garrote,³ J. A. Brown,² L. Crespo Campo,³ T. K. Eriksen,³ F. Giacoppo,³ A. Görgen,³ K. Hadyńska-Klęk,³ . A. Henderson,¹ M. Klintefjord,³ M. Lebois,⁵ T. Renstrøm,³ S. J. Ross,³ E. Sahin,³ T. G. Tornyi,³ G. M. Tveten,³ A. Voinov,⁶ M. Wiedeking,⁷ J. N. Wilson,⁵ and W. Younes¹

PHYSICAL REVIEW C 100, 024305 (2019)

Restricted spin-range correction in the Oslo method: The example of nuclear level density and γ -ray strength function from $^{239}Pu(d, p\gamma)^{240}Pu$

F. Zeiser@,^{1,*} G. M. Tveten,¹ G. Potel,² A. C. Larsen,¹ M. Guttormsen,¹ T. A. Laplace,³ S. Siem,¹ D. L. Bleuel,⁴ B. L. Goldblum,³ L. A. Bernstein,³ F. L. Bello Garrote,¹ L. Crespo Campo,¹ T. K. Eriksen,¹ A. Görgen,¹ K. Hadynska-Klek,¹ V. W. Ingeberg,¹ J. E. Midtba,¹ E. Sahin,¹ T. Tornyi,¹ A. Voinov,³ M. Wiedeking,⁶ and J. Wilson⁷

What are the implications of published data (most) that have not investigated the reduction factors?

LBNL/UCB: NLD database actions year 1

Collection of experimental NLD:

- In coordination with other experimental CRP participants.
- This will be accomplished by sourcing publications and extracting data from tables.
- If not possible the author(s) will be contacted to request data.
- If unsuccessful digitize data from figures.

Assess collected data:

• Assessment of data on the basis of agreed constraints during the CRP meeting.

Assignment of quality indicators

• Full uncertainty budget, full model uncertainties, normalization, other constraints e.g. Shape Method, etc

Data and readme files:

- The data files will be accompanied by readme files which
- include pertinent experimental and analytical information.
- In format agreed on by CRP.

Submit compilation of experimental NLD to IAEA

• By ???

Thank you!

Mathis Wiedeking Nuclear Science Division mwiedeking@lbl.gov http://nucleardata.berkeley.edu

Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contracts No. DE-AC02-05CH11231 and the US Nuclear Data Program.

Constraining Nuclear Level Densities Using the Shape Method and Related CRP Research Activities | BERKELEY LAB