Theoretical Nuclear Level Density models for practical applications

S. Goriely, W. Ryssens, A. Sánchez Fernández ULB (Belgium)

> **S. Hilaire, S. Péru** CEA/DAM (France)

New developments in Nuclear Level Density models

- QRPA + Boson Expansion model (S. Hilaire, S. Péru, S. Goriely)
- BSkG3 + Combinatorial model including triaxiality (S. Goriely, W. Ryssens, S. Hilaire, A. Sánchez Fernández)
- 3. Testing the quality of Nuclear Level Density models on Oslo data

(S. Goriely, A.-C. Larsen, D. Mücher)

Global HFB + Combinatorial NLD model

Level density estimate is a counting problem: $\rho(U)=dN(U)/dU$

N(U) is the number of ways to distribute the nucleons among the available levels for a fixed excitation energy U

• Skyrme / Gogny HFB

⇒ GS properties: SPL scheme, Pairing strength, MoI, deformation, ...

- HFB + Combinatorial calculation
 - \Rightarrow Incoherent particle-hole $\omega_{ph}(U,M,\pi)$
 - \Rightarrow Incoherent total state densities $\omega_{tot}(U,M,\pi)$
- Vibrational enhancement
 - Construction of multiphonon state densities $\omega_{vib}(U,M,\pi)$ using a boson partition function with $\lambda=2$, 3 and 4 phonons
 - Folding of the total incoherent $\omega_{tot}(U,M,\pi)$ with $\omega_{vib}(U,M,\pi)$ \Rightarrow band-head state densities $\omega_{bh}(U,M,\pi)$
- Construction of spherical level densities :

 $\Rightarrow \rho_{\mathsf{sph}}(U,J,\pi) = \omega_{\mathsf{bh}}(U,M=J,\pi) - \omega_{\mathsf{bh}}(U,M=J+1,\pi)$

• Construction of deformed level densities, i.e. rotational bands on top of every bandhead state

 $\Rightarrow \rho_{\mathsf{def}}(\mathbf{U}, \mathbf{J}, \pi) = \frac{1}{2} \sum_{\mathbf{K}} \omega_{\mathsf{bh}}(\mathbf{U} - \mathbf{E}_{\mathsf{rot}}(\mathbf{J}, \mathbf{K}), \mathbf{K}, \pi)$

• Mixing of deformed and spherical level densities using a phenomenological transition from deformed to spherical shape

$$\rho(U, J, \pi) = \left[1 - \mathcal{F}\right] \rho_{\rm sph}(U, J, \pi) + \mathcal{F} \rho_{\rm def}(U, J, \pi) \text{ with } \mathcal{F} = 1 - \frac{1}{1 + e^{(E_{def} - E_{def}^*)/e}}$$

or
$$\mathcal{F} = 1 - \frac{1}{1 + e^{(\beta_2 - \beta_2^*)/b}}$$

 \rightarrow Tables of NLD obtained with BSk14+HFB & D1M+T-HFB

Global adjustment for practical applications

$$\rho^*(U) = e^{\alpha \sqrt{U-\delta}} \times \rho(U-\delta)$$

α and δ adjusted to fit - discrete levels (\approx 1200 nuclei) and - D_0 's (\approx 300 nuclei)

(not a trivial problem: cf Arjan's talk)

Nuclear Level densities

New combinatorial predictions based on the BSkG3 nuclear structure properties

New HFB nuclear mass models

MOCCa code on a Grid representation: Ryssens et al. 2021-2025

Grams, Ryssens et al. (EPJA 59, 270, 2023)

BSkG3 interactions (MOCCa code: Ryssens et al. 2021-2025): σ(M)=0.63 MeV

Energy gain by triaxial deformation

- Many nuclei gain **0.5-2.5** MeV
- Highest gains for Z~43 (Rh)

Rotational invariants

- obtained from COULEX
- data compiled by M. Zielińska

BSkG3: Inclusion of octupole deformation for GS configuration

BSkG3 interactions (MOCCa code: Ryssens et al. 2021-2025): σ(M)=0.63 MeV

- Lower single-particle density
- No more *K* quantum numbers

$$\bar{K} = \frac{1}{2} \lfloor 2 \langle \hat{J}_{\mu} \rangle \rceil$$

where $\mu = x = y = z$ is the principal axis of the nucleus in the intrinsic frame with the lowest Belyaev moment of inertia.

 \rightarrow "round to the nearest half-integer" and reduces to the *K* quantum number in the case of axial symmetry

BSkG3 interactions (MOCCa code: Ryssens et al. 2021-2025): σ(M)=0.63 MeV

BSkG3 + Combinatorial model

NLDs for triaxial nuclei: ¹⁰⁸Pd

Wouter Ryssens (ULB)

Rotational enhancement

- rigid rotor modelling
 - three moments of inertia
 - requires a small diagonalization
- results in (at same excitation)
 - more states
 - more extended spin distribution

$$\hat{H}_{\rm rot} = \sum_{\mu=x,y,z} \frac{\hat{J}_{\mu}^2}{2\mathcal{I}_{\mu}}$$

$$J = J_{\rm rot} + \bar{K}$$

BSkG3 interactions (MOCCa code: Ryssens et al. 2021-2025): σ(M)=0.63 MeV

$$\rho(E_X, J, P) = \frac{1}{2} \sum_{\bar{K}=-J}^{J} \sum_{i=1}^{n^{J,\bar{K}}} \rho\left(E_X - E_i^{J,\bar{K}}, P\right) \qquad n^{J,\bar{K}} = \begin{cases} J_{\text{rot}} + 1 & \text{if } J_{\text{rot}} \text{ is even, and } \bar{K} \neq 0, \\ J_{\text{rot}} & \text{if } J_{\text{rot}} \text{ is odd, and } \bar{K} \neq 0, \\ J_{\text{rot}}/2 + 1 & \text{if } J_{\text{rot}} \text{ is even, and } \bar{K} = 0, \\ (J_{\text{rot}} - 1)/2 & \text{if } J_{\text{rot}} \text{ is odd, and } \bar{K} = 0. \end{cases}$$

Phenomenological collective enhancement

$$rac{
ho_{ ext{triaxial}}}{
ho_{ ext{axial}}}\sim rac{\sqrt{\mathcal{I}_x\mathcal{I}_y\mathcal{I}_z}}{\mathcal{I}_{\perp}}U^{1/4}$$

"Frozen" SPL taken from prolate configurations with triaxial GS moments of inertia \mathcal{I}

20

BSkG3 interactions (MOCCa code: Ryssens et al. 2021-2025): σ(M)=0.63 MeV

$$\rho(E_X, J, P) = \frac{1}{2} \sum_{\bar{K}=-J}^{J} \sum_{i=1}^{n^{J,\bar{K}}} \rho\left(E_X - E_i^{J,\bar{K}}, P\right) \qquad n^{J,\bar{K}} = \begin{cases} J_{\text{rot}} + 1 & \text{if } J_{\text{rot}} \\ J_{\text{rot}} & \text{if } J_{\text{rot}} \\ J_{\text{rot}}/2 + 1 & \text{if } J_{\text{rot}} \\ (J_{\text{rot}} - 1)/2 & \text{if } J_{\text{rot}} \end{cases}$$

 $\begin{array}{ll} I_{\rm rot}+1 & \text{if } J_{\rm rot} \text{ is even, and } \bar{K} \neq 0, \\ J_{\rm rot} & \text{if } J_{\rm rot} \text{ is odd, and } \bar{K} \neq 0, \\ I_{\rm ot}/2+1 & \text{if } J_{\rm rot} \text{ is even, and } \bar{K}=0, \\ I_{\rm ot}-1)/2 & \text{if } J_{\rm rot} \text{ is odd, and } \bar{K}=0. \end{array}$

Wider Spin Distribution

Spin distribution

Deeper analysis of the spin cut-off and its energy dependence ? Experimental spin distribution from (p,p') reaction: $\sigma=2.9 \pm 0.2$ (Guttormsen et al., 2022)

Effects of traxiality on BSkG3+Combinatorial NLD

Main impact of the triaxiality on the NLD:

- Reduction of the spl density \rightarrow Lower intrinsic NLD
- Additional collective enhancement \rightarrow Increase total NLD

For modestly deformed nuclei: **Decrease of NLD**

For well deformed nuclei: Increase of NLD

Effects of triaxiality on s-wave resonance spacings

 $D_0 = s$ -wave neutron resonance spacings

$$\rho(U, J, \pi) = \left[1 - \mathcal{F}\right] \rho_{\rm sph}(U, J, \pi) + \mathcal{F} \rho_{\rm def}(U, J, \pi)$$

with $\mathcal{F} = 1 - \frac{1}{\frac{r_{42} - r_{42}^*}{1 + e^{\frac{r_{42} - r_{42}^*}{d^*}}}}$ $r_{42} = E_1(4^+)/E_1(2^+)$ from D1M 5DCH $r_{42}^* = 3.0 \& d^* = 0.4$

Comparison with RIPL-3 resonance spacings

PS: Experimental uncertainties not included in the calculation of f_{mean} and f_{rms}

Comparison with RIPL-3 resonance spacings

299 nuclei

D_0	fmean	$f_{\rm rms}$				
BSkG3	1.03	1.96				
HFB+Comb	0.95	2.34				
T-HFB+Comb	1.11	2.58				
QRPA+BE	1.12	2.50				

 $D_1 = p$ -wave neutron resonance spacings

116 nuclei

D_0	fmean	frms
BSkG3	1.21	1.99
HFB+Comb	1.01	2.24
T-HFB+Comb	1.62	4.38
QRPA+BE	1.72	3.75

Comparison of BSkG3+Combinatorial NLD with Oslo data

Following the normalisation procedure of Oslo data (SG, Larsen, Mücher, PRC106, 044315, 2022)

Renormalisation of BSkG3 NLD on D_0 's and low-lying levels

$$\rho^*(U) = e^{\alpha \sqrt{U-\delta}} \times \rho(U-\delta)$$

(not a trivial problem: cf Arjan's talk)

Impact of the BSkG3+combinatorial on HF (n,γ) reaction rates ($T_9=1$)

Energy-, spin- and parity-dependent NLD tables ready for use for 7677 nuclei ($8 \le Z \le 110$) including renormalisation coefficients (α , δ) on experimental D_{exp} & LLL (when available) $0.25 \le U \le 200 \text{MeV}; \ 0 \le J \le 50; \ \pi = \pm$

Impact of BSk14+comb (2008) vs BSkG3+comb (2025) on $N_a < \sigma v >$

Extension of BSkG3 predictions to fission properties

BSkG3 prediction of fission paths

• Triaxial inner barrier

• Triaxial- **and** octupole-deformed outer barrier

(also for odd-*A* and odd-odd nuclei)

Impact of triaxiality on the barrier height

BSkG3: Remarkable description of primary fission barriers ($\sigma=0.33MeV$)

rms deviations on 45 Z>90 nuclei wrt known (RIPL3) fission barriers/wells

	BSkG3
ന(<i>M</i>) [MeV]	0.63
σ(<i>E</i> _I) [MeV]	0.33
σ(<i>E</i> _{II}) [MeV]	0.51
$\sigma(E_{iso})$ [MeV]	0.36

	HFB-14	FRLDM				
σ(<i>M</i>) [MeV]	0.76	0.81				
σ(<i>E</i> _I) [MeV]	0.59	0.76				
σ(<i>E</i> _{II}) [MeV]	0.72					
$\sigma(E_{iso})$ [MeV]	0.73					

BSkG3: Remarkable description of spontaneous fission half-lives

NLD at the fission saddle points: coherent treatment of triaxiality

Default calculation of xxxU(n,f) cross sections with BSkG3 fission path $[E(\beta_{20}),\mu(\beta_{20})]$ and NLD at saddle points

Coherent fit to ^{xxx}U(n,f) cross sections with BSkG3 fission path [$E(\beta_{20}),\mu(\beta_{20})$] and NLD at saddle points

NLD tables at the fission saddle points and isomers

Energy-, spin- and parity-dependent NLD tables calculated for ~ 1600 PES ($90 \le Z \le 110$) \rightarrow to be extended to ~2000 nuclei ($90 \le Z \le 118$)?

$0.25 \le U \le 200 \text{MeV}; \ 0 \le J \le 50; \ \pi = \pm$

		****	*******	******	*******	******	*******	*******	*******	******	******	********	******	*******	******	*******	***		
		* 7	- 92 4-23	5. Positi	-Parity	Snin-den	andent lev	al Densit	Ly [MeV_1	1 for II 2	$36 h^2 - 0$	$61 h^2 - 0$	A 61 h30-	0 00 h40	- 0 26 Tc	- 41 61	*		
		****	********	******	********	*******	*******	*******	******	********	******	*********	********	*******	******	********	***		
U[MeV]	T[MeV]	NCUMUL	RHOOBS	RHOTOT	J=00	J=01	J=02	J=03	J=04	J=05	J=06	J=07	J=08	J=09	J=10	J=11	J=12	J=13	J=14
0.25	0.108	1.10E+01	8.69E+01	1.03E+03	3.08E+00	7.69E-01	8.46E+00	6.92E+00	1.46E+01	1.23E+01	1.46E+01	8.46E+00	7.69E+00	3.08E+00	3.08E+00	7.69E-01	1.54E+00	7.69E-01	7.69E-01
0.50	0.153	3.80E+01	1.29E+02	1.74E+03	4.67E+00	1.33E+00	1.13E+01	8.67E+00	1.53E+01	1.27E+01	1.67E+01	1.27E+01	1.47E+01	1.00E+01	8.00E+00	5.33E+00	3.33E+00	1.33E+00	1.33E+00
0.75	0.187	8.80E+01	2.66E+02	3.56E+03	7.22E+00	3.89E+00	2.22E+01	2.22E+01	3.61E+01	2.94E+01	3.50E+01	2.50E+01	2.44E+01	1.44E+01	1.39E+01	1.06E+01	9.44E+00	5.56E+00	3.89E+00
1.00	0.216	1.74E+02	4.28E+02	6.05E+03	9.00E+00	6.00E+00	2.90E+01	3.10E+01	5.15E+01	4.80E+01	5.40E+01	4.35E+01	4.40E+01	3.15E+01	2.70E+01	1.70E+01	1.45E+01	8.00E+00	6.50E+00
1.25	0.241	3.83E+02	1.24E+03	1.76E+04	2.55E+01	1.85E+01	7.95E+01	8.85E+01	1.44E+02	1.40E+02	1.56E+02	1.34E+02	1.27E+02	9.45E+01	8.25E+01	5.15E+01	3.90E+01	2.10E+01	1.55E+01
1.50	0.264	8.33E+02	2.36E+03	3.45E+04	4.60E+01	3.60E+01	1.46E+02	1.68E+02	2.64E+02	2.52E+02	2.84E+02	2.44E+02	2.32E+02	1.82E+02	1.59E+02	1.16E+02	8.85E+01	5.70E+01	3.75E+01
1.75	0.286	1.88E+03	6.05E+03	9.07E+04	9.95E+01	8.35E+01	3.36E+02	4.06E+02	6.34E+02	6.38E+02	7.38E+02	6.42E+02	6.21E+02	4.88E+02	4.10E+02	2.98E+02	2.26E+02	1.55E+02	1.12E+02
2.00	0.305	4.07E+03	1.14E+04	1.73E+05	1.88E+02	1.64E+02	6.36E+02	7.64E+02	1.16E+03	1.17E+03	1.34E+03	1.19E+03	1.16E+03	9.32E+02	7.94E+02	5.87E+02	4.48E+02	3.02E+02	2.18E+02
2.25	0.324	9.10E+03	2.89E+04	4.54E+05	4.14E+02	3.69E+02	1.42E+03	1.75E+03	2.71E+03	2.82E+03	3.30E+03	3.05E+03	3.01E+03	2.47E+03	2.15E+03	1.64E+03	1.28E+03	8.92E+02	6.29E+02
2.50	0.341	1.93E+04	5.29E+04	8.39E+05	7.42E+02	6.78E+02	2.60E+03	3.23E+03	4.98E+03	5.13E+03	5.90E+03	5.41E+03	5.33E+03	4.47E+03	3.92E+03	3.03E+03	2.39E+03	1.71E+03	1.25E+03
2.75	0.358	4.16E+04	1.25E+05	2.05E+06	1.53E+03	1.44E+03	5.45E+03	7.01E+03	1.10E+04	1.16E+04	1.36E+04	1.27E+04	1.28E+04	1.08E+04	9.62E+03	7.57E+03	6.10E+03	4.46E+03	3.31E+03
3.00	0.374	8.52E+04	2.24E+05	3.70E+06	2.75E+03	2.62E+03	9.86E+03	1.26E+04	1.95E+04	2.05E+04	2.38E+04	2.24E+04	2.23E+04	1.92E+04	1.73E+04	1.37E+04	1.11E+04	8.18E+03	6.12E+03
3.25	0.389	1.76E+05	5.07E+05	8.67E+06	5.45E+03	5.25E+03	1.98E+04	2.58E+04	4.04E+04	4.37E+04	5.19E+04	5.00E+04	5.10E+04	4.46E+04	4.06E+04	3.30E+04	2.72E+04	2.05E+04	1.56E+04
3.50	0.404	3.48E+05	8.62E+05	1.49E+07	9.20E+03	8.89E+03	3.35E+04	4.35E+04	6.81E+04	7.36E+04	8.68E+04	8.35E+04	8.50E+04	7.50E+04	6.88E+04	5.65E+04	4.69E+04	3.58E+04	2.77E+04
3.75	0.418	6.87E+05	1.86E+06	3.30E+07	1.81E+04	1.75E+04	6.61E+04	8.71E+04	1.38E+05	1.51E+05	1.81E+05	1.77E+05	1.82E+05	1.63E+05	1.50E+05	1.25E+05	1.06E+05	8.22E+04	6.46E+04
4.00	0.432	1.30E+06	3.08E+06	5.53E+07	2.99E+04	2.90E+04	1.09E+05	1.43E+05	2.25E+05	2.46E+05	2.94E+05	2.88E+05	2.97E+05	2.67E+05	2.49E+05	2.09E+05	1.78E+05	1.40E+05	1.11E+05

To be ready in a few weeks/months... (today ~ 1300 nuclei)

THANK YOU FOR YOUR ATTENTION