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Types of fuel elements and particles in AVR 
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Activity release into AVR primary circuit
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Conversion of AVR core from HEU to LEU
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Fissile material inventories measured

Falta 1993
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 H-3 (12 yrs halflife)
Fission product, B and Li impurities in graphite, He-3
~2 GBq (50 mCi) per fuel sphere
existing as HT, HTO (95%), T2

 Kr-85 (10.8 yrs halflife)
Fission product, released from Ufree
~11 GBq (0.3 Ci) per fuel sphere

 C-14 (5730 yrs halflife)
Natural production in atmosphere at rate 106 GBq/yr (27,000 Ci/yr)
Production from nuclear weapon tests: 2.3x108 GBq
Production in 1000 MWt HTR: 4.3x103 GBq (sources: N-14, C-13)
1 g of C-14 corresponds to 170 GBq (4.6 Ci)
~15 MBq C-14 per fuel sphere

Radionuclides of interest for interim storage
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Activity measured in dry canister atmosphere

 Activity release from 
20 spent fuel spheres
measured on two separate
canisters (heatable),
one canister with oxidic fuel,
one with carbidic fuel

 Also use of 5-spheres furnace
for higher temperatures

 Cooling period of fuel ~2 yrs

Duwe 1980
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Activity release measurements

Kr-85H-3

Release from 20 AVR spheres in closed/open container

Duwe 1980
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Activity measured in canister atmosphere

 Activity release from 
950 spent fuel spheres
measured on two separate
canisters 

 one canister with oxidic fuel,
one with carbidic fuel

 Cooling period of fuel ~4 yrs
(thermal power < 100 W 
per canister)

 Void volume per canister
113 liters

 2 valves, 44 thermocouples Duwe 1984
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Activity measured in AVR-TK canister

 After ~6 months, H-3 (HTO)
release levels out,
sorption equilibrium inside canister

 50 times the H-3 in the canister
atmosphere adsorbed in matrix

 Assuming specified leakage rate,
0.6% Kr-85 and 1.4% H-3 are
released per yr from canister,
compared to 6% decrease by decay 

GO spheres
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 Summary of measurements
for temperature range
up to 400°C

 Lower release rates for
MTR-irradiated spheres
vs. AVR

Activity release from spent HTGR spheres

Release into canister
gas atmosphere

Duwe 1987
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 Demonstration testing of two prototype AVR T/S casks (GNS, TN)

 Each contained two AVR-TK canisters with 950 spheres, 
one oxide fuel (~13% FIMA), one carbide fuel (~16% FIMA)

 Cooling period of fuel: 405 days

 Neutron and gamma dose power, temperature distribution, 
activity release to be measured

Testing of shielded storage and transport casks

Duwe 1984

CASTOR cask

Wall thickness: 
top=270 
bottom=315 
side= 300 mm

Weight (empty): 18.25 t
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Gamma dose measurements at cask

 γ-Dose at cask surface
(30 cm shielding): up to 12 mR

 5 yrs later: up to 2 mR/h

 γ-Dose for carbidic fuel higher
because of higher burnup

 Contributors: Ce-144, Cs-134,
later Cs-137 dominant

Duwe 1984
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 All early HTRs based on Th-U fuel cycle
Breeding of new nuclear fuel was attractive
Reprocessing required

 Research work at Jülich started in the 1960s
 Construction of semi-technical scale facilities

JUPITER project in Germany, HET project in the USA
Cooperation program for mutual benefit

(3) Reprocessing of HTR fuel
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Reference process flow steps of JUPITER

 Reduction of FE to fragments in a hammer mill
suitable for fluidized-bed burner

 Combustion with oxygen @ 800-850°C
left-over from BISO: kernels; from TRISO: also SiC coating

 Remaining spent fuel dissolved in acid
(13M HNO3, 0.01M Al(NO3)3, 0.05M HF)

 Resulting nitrid acid solution with Th concentration of 1 mol/l
filtered, stripped off from acid to be ready for solvent extraction

 Separation of U, Th, fission products by TBP extraction
(THOREX process)

Designed for 65,000 fuel elements with oxidic fuel 
and 3yrs operation time
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Process flow in JUPITER

JUPITER = Juelich Pilot Plant for Thorium Element Reprocessing

Kaiser 1978
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Single steps of reprocessing spent fuel spheres

Head-end
 Size reduction

- separation of graphite and coated particles
- considered useful (different waste classification)

 Cracking of SiC coating

Ratio of HM to matrix:
GO:        6 to 195
THTR:  11 to 193
GLE-1: 20 to 193
GLE-3: 11 to 193
GLE-4:   7 to 193



IAEA TM on Spent Fuel from HTR 
July 2025 

19Karl Verfondern

JUPITER head-end: Incineration of graphite

 Combustion unit installed and tested with
800 graphite spheres

 Demonstration test at FZJ with 11,000 fresh fuel elements
with (U,Th)O2 TRISO particles
Grinding and combusting at a rate of 14 kg/h
No specific precaution for C-14 release

 In 1981, test with 1500 FE with UO2 TRISO particles
 Head-end operated with hot-cell technology 
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Alternative sphere disintegration (1)

Bildstein 1966

Bromine vapor

Brushing device

 Destruction of graphite structure
after 1 h exposure

 No attack on coated particles
(no intercalation in PyC)

Kronschnabel 1981
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Alternative sphere disintegration (2)

Selfrag High voltage discharge method 

Fütterer, JRC, SELFRAC 2010

After 3 pulses 300 pulses (1 min)

Separation matrix-particles: 0.4-
1.1 kWh
Cracking particles: 

0.23 kWh
Energy from one sphere: ~540 
kWh 
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Cracking of TRISO coating

 Jet stream method
cp in a fluidized-bed accelerated by compressed air jet at 300 m/s and 
mechanically ruptured when hitting steel plate

 Diamond disk mill
cp pressed into a mill gap by butterfly screw

 Double-roll crusher
cp pressed between two counter-rotating rollers with defined distance and 
crushed

Lensa 2010
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Summary of JUPITER project

 THOREX process steps developed and demonstrated in cold state 
incl. material balance and operational analysis

 JUPITER plant was almost ready to start
when decision was made to move from HEU to LEU fuel

 After strategy change, hot operation with spent fuel spheres 
never materialized

 Works continued on head-end only, 
now also including cracking of TRISO coated particles

Efforts finally abandoned in 1985
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 Investigation of barrier functions of spent fuel during
long-term storage (leaching in different environments)

 Mechanical and chemical behavior under realistic repository
conditions (corrosion in salt brine, mechanical interaction with
converging rock) 
to develop leach-resistant matrices (SiC)

 Treatment and disposal of contaminated graphite
 Manufacture and testing of transmutation fuel, conservation of 

knowhow on thorium fuels

(4) R&D works on HTR spent fuel spheres
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Separate effect investigations on spent fuel

Fachinger 2006
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Brine leaching tests

 A salt mine can typically be considered dry, but
- lye inclusions may migrate
- ingress of groundwater saturating with salt

 Corrosion experiments with different metal pieces in 
different compositions of lyes

 Nuclide mobilization experiments with spent fuel spheres
in a lye over several years
@ T up to 200°C and @ p up to 30 MPa
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Composition of brines

Lye typically changed every month
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Cesium release rates in AVR fuel spheres

Ganser 1987
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Cesium fractional release in AVR fuel spheres

Duwe 1993
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SiC leaching rates and lifetime in different media
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Results of leach tests

 Initial release of cesium (10-20%) bound at surface and 
in porosity of matrix

 After 200-300 days, steady-state leach rate

 Higher release from BISO compared to TRISO fuel

 Cesium release rates after 4 yr ~103 Bq/d, fraction Ftot < 10-4

 Much higher release for defective/failed coated particles

 100% release for bare UO2 kernels, ~10% for bare (U,Th)O2
kernels after 1 yr

 No corrosion effect on intact TRISO coating
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Summary and conclusions

 Much experience obtained on the characterization of 
spent HTGR fuel from AVR and THTR-300

 All fuel in intermediate storage before agreement is
made on final repository for direct disposal

 Segregation of fuel matrix recommended,
various processes demonstrated on non-irradiated fuel

 More future activities on separate effect investigations
on barrier function of single fuel components desirable
with focus on TRISO


