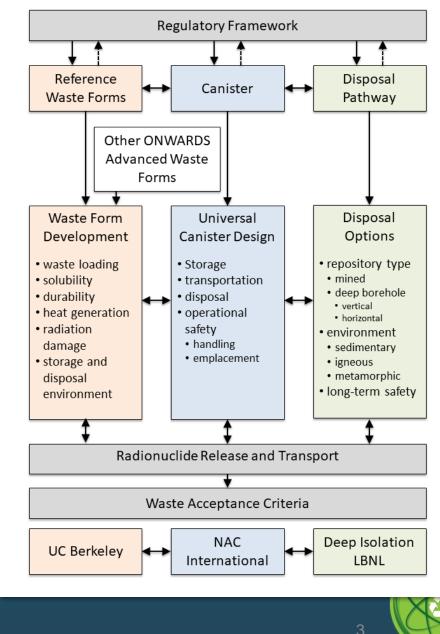
Managing Spent TRISO Fuel for High Temperature Reactors Using Deep Isolation's Universal Canister System

9 July 2025

Jesse Sloane, PE Executive VP of Engineering Deep Isolation

Agenda

- Overview of Project UPWARDS and Project PUCK
- Universal Canister System Development
- TRISO Waste Characterization
- Performance Assessments
- Waste Acceptance Criteria Development
- Conclusion
- Questions

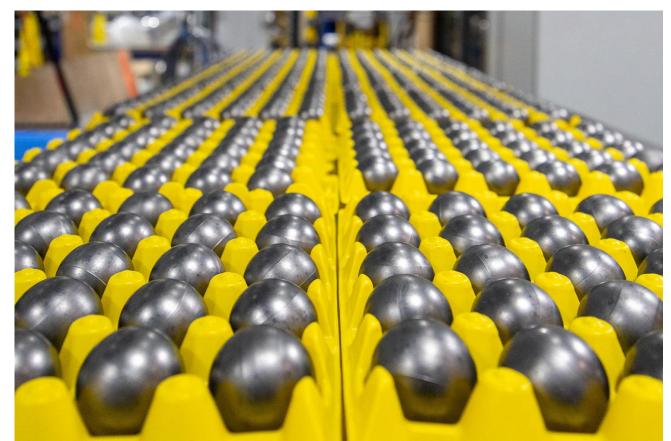


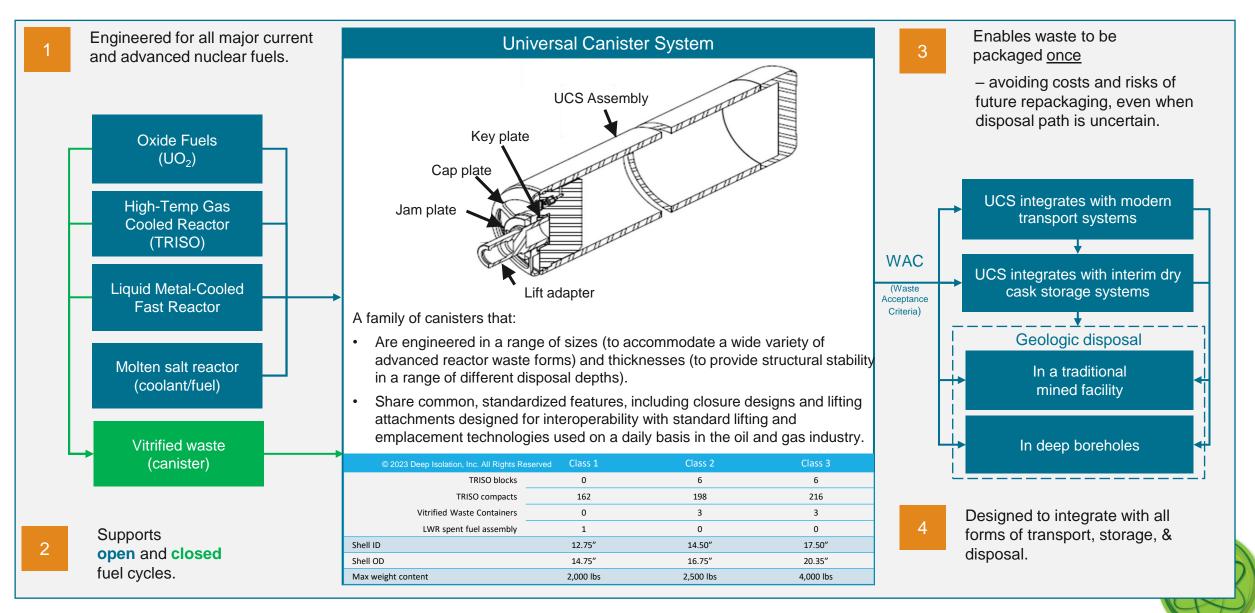
Project UPWARDS

<u>U</u>niversal <u>P</u>erformance Criteria and Canister for Advanced Reactor <u>W</u>aste Form <u>A</u>cceptance in Borehole and Mined <u>R</u>epositories Considering <u>D</u>esign <u>S</u>afety

Four workstreams:

- 1. Waste Form Development
- 2. Canister Design and Prototype
- 3. Models and Generic Performance Assessment
- 4. Waste Acceptance Criteria


Project PUCK


Performance Validation of the Universal Canister System for Kairos Power

Two main workstreams:

- 1. Waste Form and Canister Analysis
- 2. Techno-Economic Analysis

The Universal Canister System: Overview

UPWARDS

DEEP ISOLATION

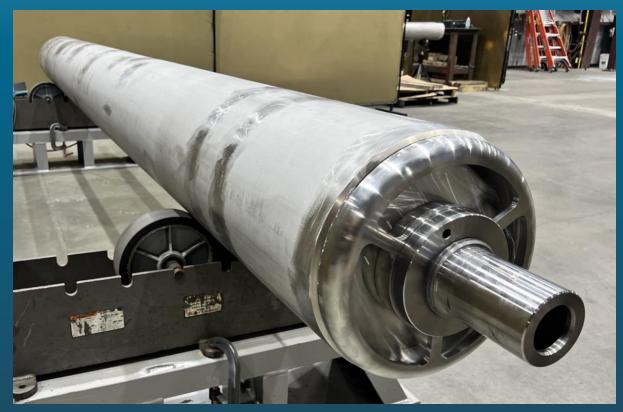
BERKELEY LAB

ONWARDS

UCS Prototype Fabrication

UCS Prototype canister without lift adapter assembly

Disassembled lift adapter assembly



UCS Prototype Fabrication

Fully assembled prototype UCS canister

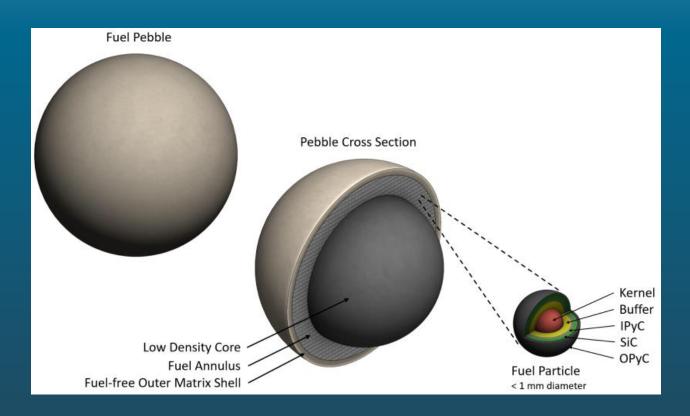
Completed UCS prototype canister

TRISO Waste Characterization

- Highly durable, being used by multiple AR developers
- Spherical pebbles, cylindrical compacts, and full prismatic assemblies
- Experimentation
 - Dissolution of impermeable SiC layer
 - Purity, temperature, and pH effects

• Purity (~97.5% : >99.9995%)

- 5x faster @ lower purity
- Further studies assumed CVD high-purity SiC
- Temperature
 - Activation energy (E_a) for performance assessments
 - Potential Si saturation at high temperatures
- pH
 - Dissolution follows pH power law relationship

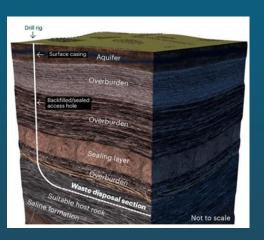


TRISO fuel properties & key characteristics

- Pebble diameter
- Mass of Uranium
- Particle packing fraction
- Number of TRISO particles
- Fuel kernel material
- Kernel diameter
- Buffer thickness
- IPyC thickness
- SiC thickness
- OPyC thickness

UPWARDS

DEEP ISOLATION


Performance Assessments

- Numerical modeling
 - TOUGHREACT
 - iTOUGH2
- Multiple waste forms
 - LaBS glass
 - TRISO
 - Intact halide salts
- Multiple disposal pathways

Mined repository

Horizontal borehole repository

Vertical borehole repository

Aquiler Surface Casing Waste Disposal Section

Waste Form-Repository Pairings

Berkeley

DEEP ISOLATION[®]

UPWARDS

		Repository Concept		
		Mined Repository	Vertical Borehole	Horizontal Borehole
Waste Form	LaBS	Host formation: Shale Multiple Class 3 UCSs in overpack	Host formation: Fractured rock String of Class 3 UCSs	n/a
	TRISO	Host formation: Shale Multiple Class 1–3 UCSs in overpack	Host formation: Fractured rock String of Class 1–3 UCSs	Host formation: Shale String of Class 1 or Class 2 UCSs
	Molten Salt	Host formation: Shale Multiple Class 1–3 UCSs in overpack	Host formation: Fractured rock String of Class 1–3 UCSs	Host formation: Shale String of Class 1 or Class 2 UCSs

NAC INTERNATIONAL

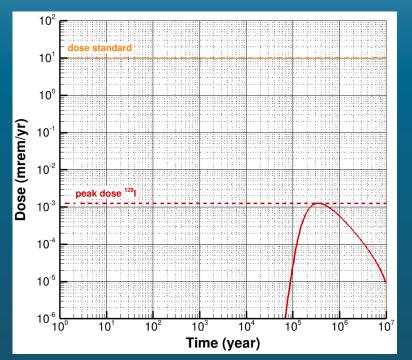
BERKELEY LAB

Performance Assessment Screening Models

- UCB research/experimental results \rightarrow PA modeling inputs
- ~80 adjustable parameters
- Down-selection of radionuclide inventory
 - Characteristics of each RN
 - Properties of waste
 - Conditions in repository system & influence on RN transport
- Performance Metrics
 - A: Exposure dose
 - B: Waste temperature

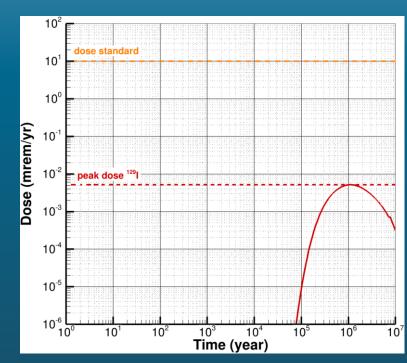
PA Results for Kairos Power

10²


10

 10°

10

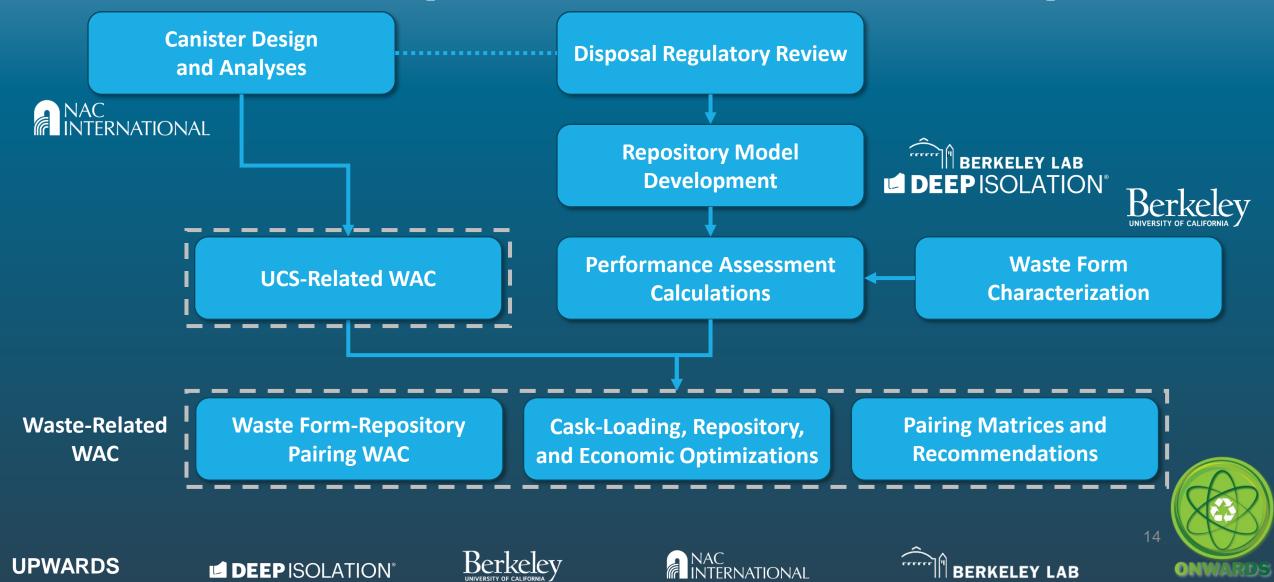

peak dose

Dose (mrem/yr)

Exposure dose for reference parameter set (¹²⁹I) for a <u>horizontal borehole</u> repository 10⁻² 10⁻³ 10⁻⁴ 10⁻⁶ 10⁻⁶ 10⁻⁶ 10⁻⁶ 10⁻¹ 10⁻¹ 10² 10³ 10⁴ 10⁻⁴ 10⁻⁵ 10⁻¹ 10² 10³ 10⁴ 10⁻⁴ 10⁻⁵ 10⁵ 10⁻⁶ 10⁻⁵ Time (year) Exposure dose for reference

parameter set (¹²⁹I) for a <u>vertical borehole</u> repository

Exposure dose for reference parameter set (¹²⁹I) for a <u>mined</u> repository


DEEP ISOLATION[®]

Waste Acceptance Criteria Development

Two Categories of WAC

Canister-related criteria*

- UCS Design Specification
- Preliminary design analyses
- *Potential for waste form-agnostic criteria

Pairing-specific criteria

- Results of safety & performance assessments
- Unique to each pairing of waste form & repository configuration

TRISO-specific criteria

- Varying criteria depending on repository configuration
 - Mined repository; vertical borehole; horizontal borehole
- Waste loading of safety-relevant RNs
 - mass of 129 I, 238 U, and 235 U per UCS
- Heat loading
 - kW of decay heat per UCS
- Waste age
 - Years of cooling time between waste generation and emplacement in repository

BERKELEY LAB

Waste acceptance criteria are *interdependent* with

repository site-selection criteria

Performance Metrics

A. Peak Dose

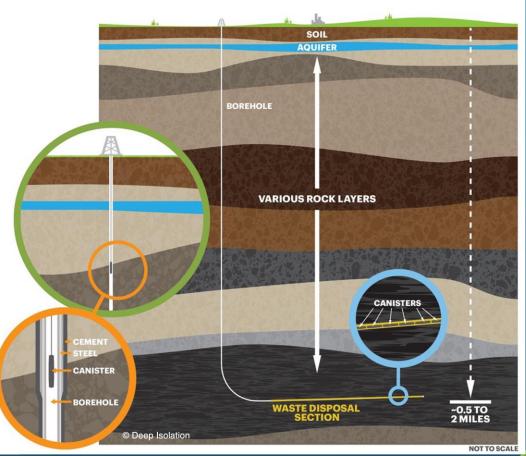
- 1 mrem/year
 - Self-imposed limit @ 10% of regulatory limit
 - Compensates for number of Monte Carlo samples

Waste acceptance criteria are <u>interdependent</u> with

repository site-selection criteria

B. Peak Temperature

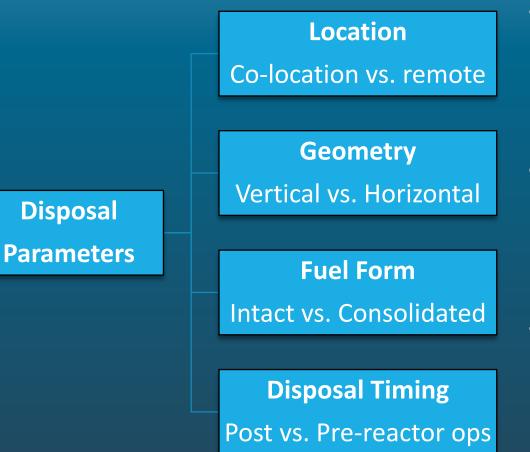
- Varied by repository type
 - MGR 100°C
 - Based on atmospheric boiling and illitization of bentonite
 - Potential to relax to 200°C
 - Borehole 250°C
 - Based on margin to maximum service temperature of duplex SS
 - 200°C limit if shallower than 1 km
 - Boiling concern



Repository Optimization

Trade space identified for

- Canister-to-canister spacing within repository
- Spacing between boreholes or deposition tunnels
- Margin to limits of performance metrics reduces with closer or larger packaging
- Site- and inventory-specific analyses could lead to further efficiencies



PUCK Techno-Economic Analysis

Berkeley

DEEP ISOLATION

UPWARDS

 Cost competitiveness and optimization potential

> NAC INTERNATIONAL

- Co-location + Horizontal DBD = ~40% cost savings vs. reference PWR disposal
- Volume reduction as a transformative option
 - >40% cost savings vs. intact TRISO spheres
- Expedited disposal versus extended dry storage
 - >30% cost savings through expedited disposal operations

BERKELEY LAB

Conclusions

DEEPISOLATION

- Project UPWARDS developed and Project PUCK validated the use of the Universal Canister System (UCS) as a viable storage, transport, and disposal system for commercial spent TRISO fuel.
- Safety and performance assessment modeling results indicate acceptable radiological and thermal performance, several orders of magnitude below safety standards.
- Techno-economic analyses show significant life-cycle cost savings through co-location, horizontal borehole disposal, and expedited disposal operations.

Berkelev

NAC INTERNATIONAL

Thank you!

Jesse Sloane, PE jesse@deepisolation.com

