

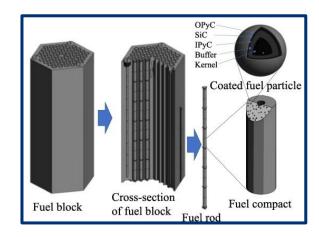
Technical Meeting on the Management of Spent Fuel (Pebbles and Compacts) from High Temperature Reactors

HTGR SNF REPROCESSING TECHNOLOGY DEVELOPMENT IN RUSSIA

Filimonova E., senior researcher of radiochemical department

Filimonova E.*, Zakharova N., Tuchkova A., Krapivina M., Shadrin A., Podrezova L.

Vienna, 7-11 of july 2025

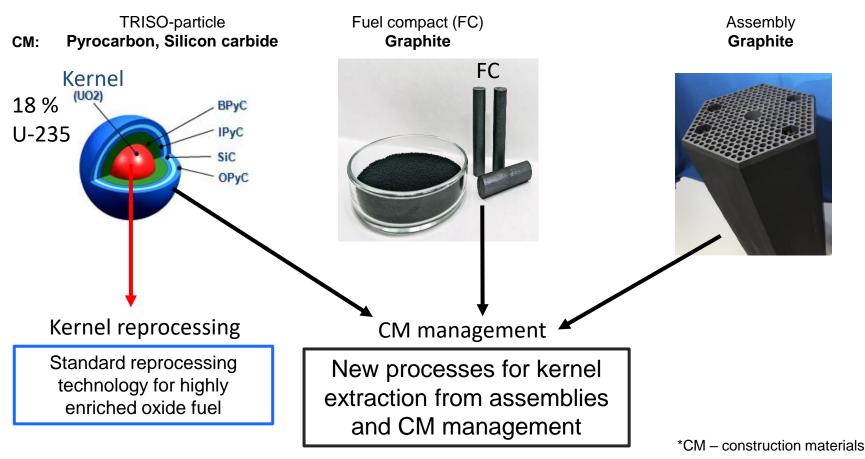


Owner and right-holder of exclusive rights of R&D results is JSC «TVEL».

R&D «High temperature gas-cooled reactor SNF reprocessing and NM recycling technology development»

2022-2024 у.

HTGR is being developed within Hydrogen Energetics Project



Composition of a prismatic type HTGR assembly

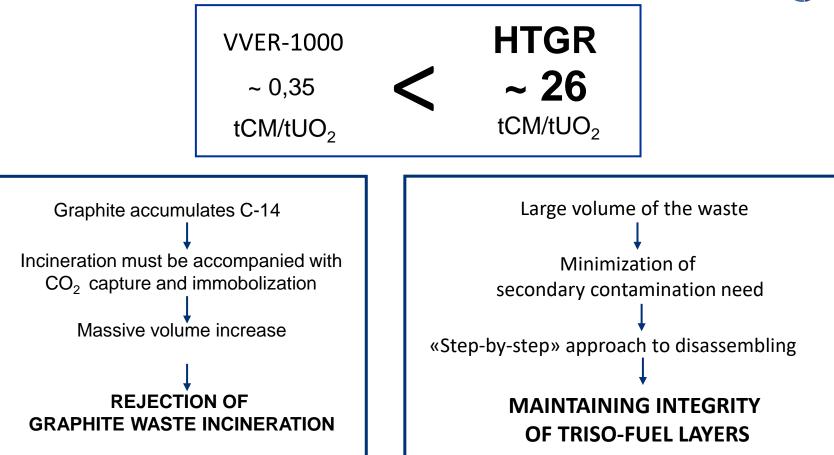
Fukaya Y., Goto M., Ohashi H. Feasibility study on reprocessing of HTGR spent fuel by existing PUREX plant and technology //Annals of Nuclear Energy. – 2023. – T. 181. – C. 109534.

HTGR fuel composition characteristics

Hydrometallurgical fuel reprocessing

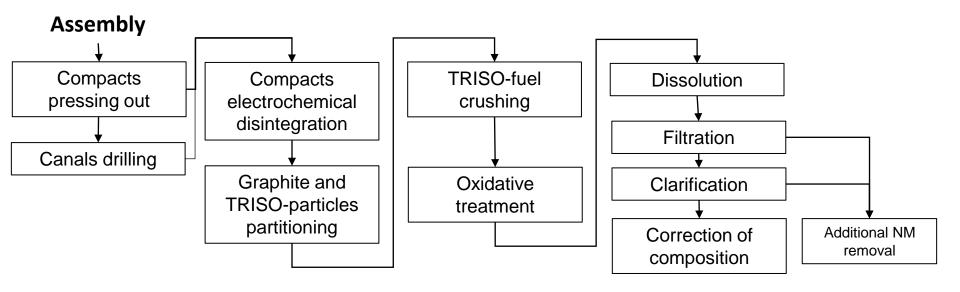
Adaptation of current extraction technology (PUREX) at operating or planned facilities

+


RT-1, PA «Mayak» EDEC, JSC «SCC» EDC, PA «MCC»

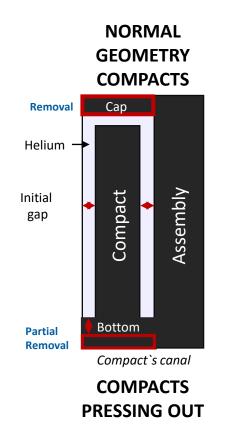
New facilities?

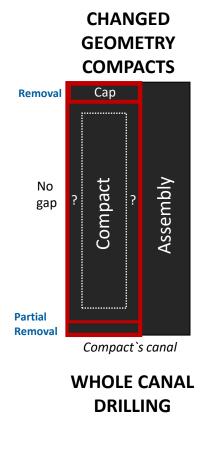
Additional facility for head-end processes of NM extraction and facility for carbonaceous waste management Fundamental approaches to HTGR SNF reprocessing technology development

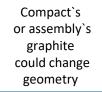


4

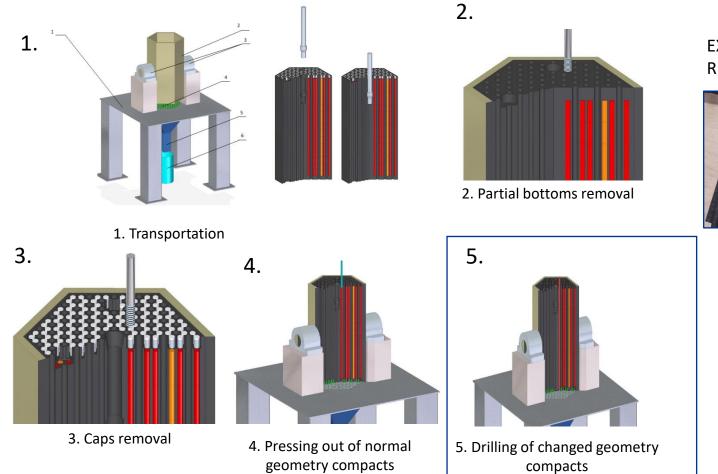
HEAD-END HTGR SNF REPROCESSING OPERATIONS PRINCIPAL FLOW-SHEET






Main reprocessing facility

COMPACTS RECOVERY FROM ASSEMBLIES

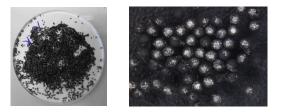


Compacts recovery unit

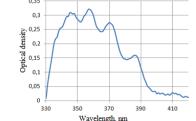
EXPERIMENTAL TESTING ON RBMK GRAPHITE

Electrochemical disintegration of fuel compacts

Process of **graphite matrix** destruction under electric current

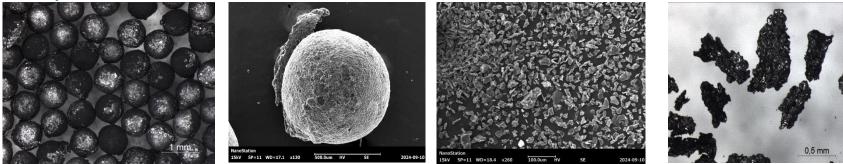


Compact – anode Electrolyte – nitric acid 3-8 mol/l



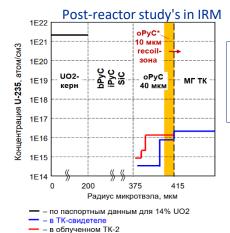
Products

TRISO intact and graphite particles

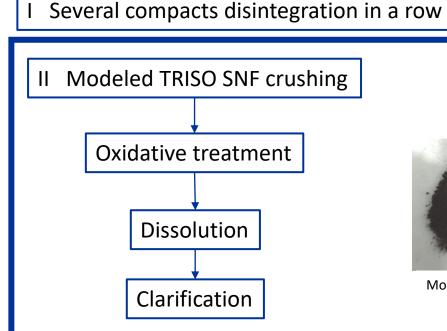

Non-desintegrated parts

Electrolyte with HNO₂, <u>WSOC</u> water-soluble organic compounds

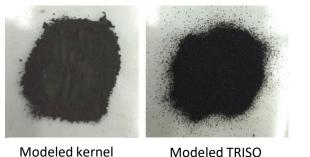
Electrochemical disintegration of fuel compacts

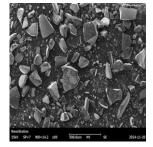

ВНИИНМ РОСАТОМ

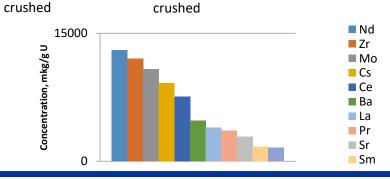
Analytical control


Materials irradiaton was conducted in «dry» canal AK-1 in active zone of reactor IVV-2M (JSC «IRM»)

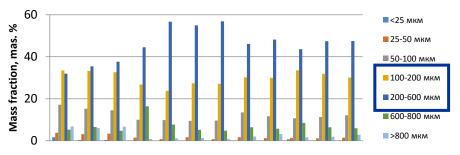
Concentration g ²³⁵ U/ml electrolyte	Concentration g ²³⁵ U/g graphite	Concentration ²³⁵ U, nuc/cm ³ OPyC
5,5·10 ⁻¹⁰	(2,0 ± 0,2)·10 ⁻⁷	4,7·10 ¹⁵
6,2·10 ⁻¹⁰	(1,3 ± 0,2)·10 ⁻⁷	1,9·10 ¹⁵




«Yield» of U due to production circumstances, not disintegration


Сквозная проверка головных процессов – Схема экспериментов

Modeled SNF HTGR fuel was synthesized in a form of kernel It was then coated with **TRISO layers**.



Compacts disintegration in a row

	Series	Experiment	[HNO₃], mol/l	V _{HNO3} , ml	Time, min
		1	5,1		63
3 pcs.	1	2	5,0		53
•		3	5,0		53
		4	4,9		56
		5	4,8		48
-	2	6	4,8		52
5 pcs.		7	4,7	450	52
		8	4,7		59
		9	4,7		50
5 ncs		10	4,7		47
5 pcs. U	3	11	4,7		47
U		12	4,6		45
		12	4,6		48

• Single electrolyte volume (3 l.)

- Average time 52 min
- No significant differences between experiments

Electrolyte HNO₃, mol/l $5,1 \rightarrow 4,6$ HNO₂, mmol/l $0 \rightarrow 12$ COD, mgO/l $0 \rightarrow 130$ Construction materials. Pyrocarbon.

Same problems as for carbide fuel

Component	U	UO ₂	РуС	BPyC+IPyC	OPyC	SiC
Mas. %	36,8	41,8	34,8	18,0	16,8	23,4



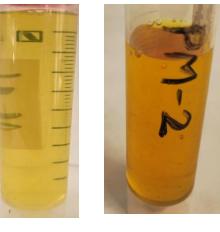
Pyrocarbon forms WSOC, films and overall worsens physical and chemical properties of solutions

Oxidative treatment

ВНИИНМ РОСАТОМ

TRISO Fraction 50 – 100 micron, 3 K/min in 17,5 vol. % oxygen in nitrogen atmosphere

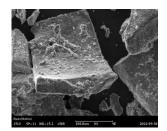
- Modeled TRISO SNF oxidation starts at 516 \pm 9,5 °C
- Ends at 709,2 ± 13,3 °C
- Heat release 3027 ± 293 J/g.
 - Loss of mass 27,41 \pm 0,70 %.
- No significant differences between experiments with different particle fractions

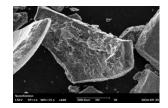

Dissolution without preliminary oxidative treatment

S(kernel) : L = 1 : (3-6), [HNO₃]=8,2 mol/l

COD~300 mgO/l

As for: COD for oxalic acid solution 3 mmol/l Or acetic acid solution 5 mmol/l

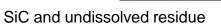

WSOC formation is **much lower** than expected for untreated TRISO Dissolved Modeled SNF After clarification


Kernels

TRISO

Undissolved particles at the surface of a SiC particle layer

Dissolution after preliminary oxidative treatment



Filtrate

COD ~ 2 times lower in comparison to untreated TRISO

SP=7 WD=13.9 x200

100.0um

A CONTRACTOR OF	
A	Cyммарни E Si 9 О 9 Реализов
123 1	
	Суммарн

2024-11-20

	Bec%	σ
Si	77.7	
0	17.6	0.9
	4.7	0.9

ый спектр карты

ано с помощью Tru-Q®

Bec%

Qualitatively U not found

Experiments should be conducted on U-235 enriched materials

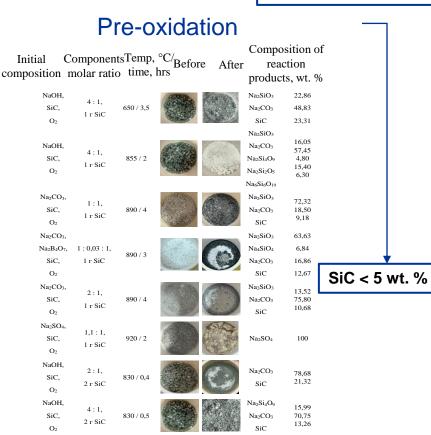
Carbonaceous radioactive waste solidification. «Conventional» approaches

8 borosilicate glass compositions for SiC vitrification were studied. All compositions meet the requirements of NP-019-15 (leaching rate, hydrolytic stability, mechanical strength, homogeneity).

SiC was vitrified into borosilicate glass on a full-scale model of the CCIM at 1200°C. The time it took for SiC to melt was 1 hour, and 20 kg of glass were produced.

Portland cement without additives

• SiC – 5 % in borosilicate glass (waste class 2)


- SiC 30 % in cement (waste class 3)
- Graphite 25 % in cement (waste class 3)

5 % SiC immobilization – unacceptably low +-45 % SiO₂ immobilization – pre-oxidation or oxidation during vitrification is of interest

Carbonaceous radioactive waste solidification. SiC oxidation

Oxidation of SiC to SiO₂

Oxidation during vitrification MnO₂, CrO₃, LiOH or LiF

- All additives reduce oxidation time in laboratory conditions
- Glass properties meet the requirements of NP-019-15
- LiF minimum holding time

At the full-scale model of the CCIM at JSC "VNIINM" **25 kg of borosilicate glass** with inclusion of **20 wt. % SiC** were produced. At the same time, the **holding time of the melt for SiC** oxidation was **3.5 hours**

Carbonaceous radioactive waste solidification. Graphite cementation

Graphite

Expanded graphite*

Experiment on immersion of spent fuel assemblies simulators in cement

50 % dipping

Waste content in matrix

- Graphite from compacts with particle size up to 1 mm 28 wt. %.
 - Graphite from gas purification system filters 20 wt. %;
 - Expanded graphite 1 wt. %;

* Expanded graphite is one of the possible forms of graphite that forms during electrochemical disintegration of compacts

Future tasks and plans

- Experimental testing on irradiated materials
- Pilot scale stand development
- **Overall stands development**
- Testing on pilot volumes
- Feasibility study
- Facilities consideration for first HTGR reactor SNF reprocessing. Most promising – first testing facility of EDC, PA «MCC»

Main factors:

The Compacts pilot production line «Luch»

Compacts irradiation in IRM and/or NIIAR A Stand for irradiated materials testing development

- Single source of materials
- Testing on rejected/discarded materials?
- Behavior of NM, FP and CM can't be modeled
- Stand facility?

Conclusions

- Head-end HTGR SNF reprocessing processes scheme was designed and rationalized by fundamental approaches;
- 2. Fundamental approaches include rejection of graphite waste incineration and maintaining integrity of TRISO-fuel layers during their recovery from assemblies;
- 3. Feasibility of main head-end operations was confirmed on non-irradiated TRISO-fuel, modeled spent fuel and imitators on lab-scale tests;
- 4. Real SNF testing of obtained operation regimes should be carried out for further technology development.

Thank you for your attention

Filimonova Elizaveta edfilimonova@bochvar.ru