

IAEA Technical Meeting on the Management of Spent Fuel (Pebbles and Compacts) from High Temperature Reactors

DEMONSTRATION PLAN FOR HEAD-END PROCESS OF HTGR SPENT FUEL REPROCESSING IN JAPAN

7th-11th July 2025

HTGR Project Management Office Nuclear Energy Research and Development Domain

Japan Atomic Energy Agency Yuji FUKAYA, Hiroyuki SATO and Nariaki SAKABA

Background

- Japan has promoted the nuclear fuel cycle by reprocessing spent fuel and effectively utilizing recovered plutonium from the perspective of resource as a basic policy.
- Japan, the U.S., etc., have performed R&D on the head-end process to remove coating layers of CFP to connect an LWR reprocessing to reprocess the spent fuel from HTGRs.
- Japan has investigated the basic concept of the head-end process and confirmed the feasibility of the elemental technologies through basic experiments.
- The head-end process must be demonstrated by using spent fuel, and Japan is planning the demonstration test using the spent fuel from HTTR.

Objective

- To overview of Japanese basic policy and back-end technologies for HTGR.
- To introduce the plan and the status of R&D for the demonstration test for head-end process using the spent fuel from HTTR.

Overview of Japanese basic policy and backend technologies for HTGR

The Target of Fuel Cycle in Japanese Policy

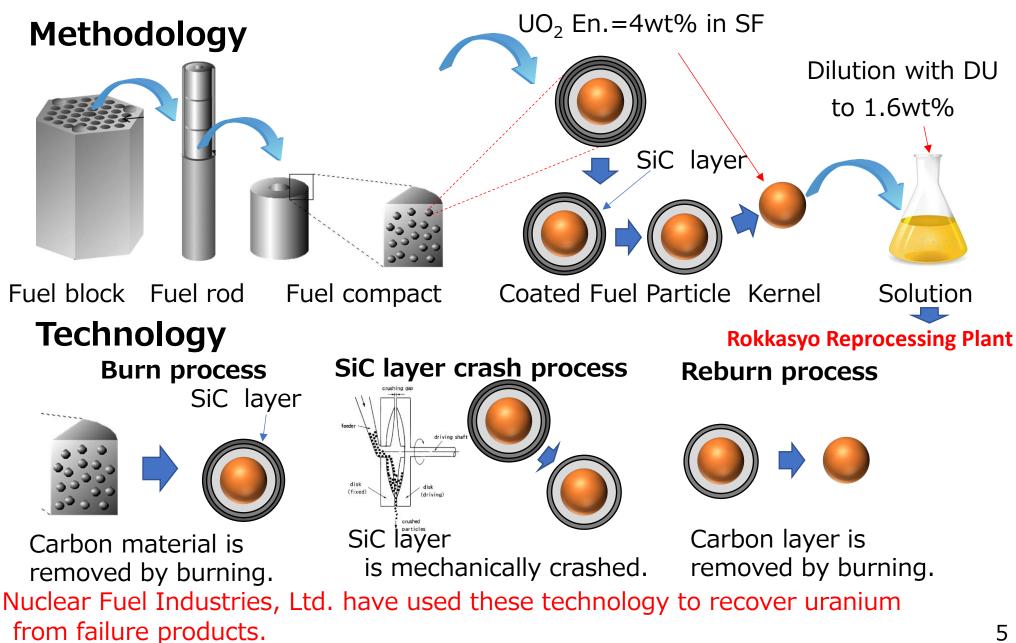
Background of basic policy for nuclear energy

Time	Event	Purpose
1955	The revision of US-Japan Nuclear Cooperation Agreement	To introduce research reactor
1956	Long range plan on the development and utilization of Nuclear Energy	"Reprocessing and breeder reactor" in the scope
1956	Japan Atomic Energy Institute	To introduce LWR
1958	The revision of US-Japan Nuclear Cooperation Agreement	To introduce LWR
1958	The UK-Japan Nuclear Cooperation Agreement	To introduce Calder Hall reactor
1963	Starting operation of JPDR (GE BWR) in JAEA	To train the LWR operator
1966	Starting commercial operation of Toukai-daiichi NPP	Starting of Calder Hall reactor operation (the last one)
1970	Starting commercial operation of 1 st unit of Tsuruga NPP(BWR), 1 st unit of Mihama NPP (PWR)	Starting of LWR operation

Reprocessing was set to be target in the basic policy for resources in Japan.

History

Japan had developed the reprocessing technologies based on French technologies.


Time	France	Japan	Purpose
1958	UP1		Generate Pu for nuclear weapon
1966	UP2		Reprocessing Calder Hall reactor SF
1976	UP2	Ļ	Update for LWR SF
1977		Tokai Reprocessing Plant	Reprocessing LWR SF, Negotiation with U.S.*
1989	UP3		Reprocessing LWR SF
2006		Rokkasyo Reprocessing Plant (RPP)	Reprocessing LWR SF

*Japan-U.S. reprocessing negotiation;

Japan, which is non-nuclear-weapon state, is accepted to extract Pu with same amount of U by U.S.

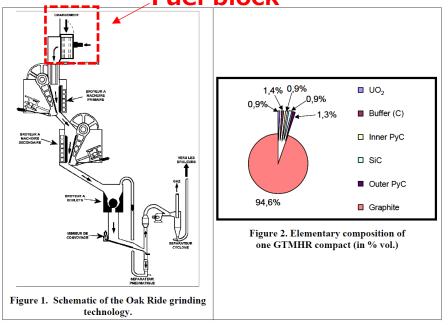
HTGR technologies had also been developed with assuming reprocessing in Japan.

Development of Head-End Process for HTGR

Advantage of Japanese Head-End Process

IAEA-TECDOC-1645 concludes that HTGR spent fuel reprocessing is challenging

by referring Dr. Greneche's opinion.


Ref.: Greneche, D., Masson, M., Brossard, P., "The Reprocessing Issue for HTR Fuels: An assessment of Its Interest and Its Feasibility", Global 2003 Conference, New Orleans, LA November, 2003.

He referred to **Oak Ridge grinding technology**, which crashes **whole fuel block**.

The waste amount is increase and recovery ratio become worse.

To conquer this problem, Japan select the pin-inblock type fuel.

Oak Ridge grinding technology

Pin-in-block type fuel

Japanese head-end process reduces waste amount with high recovery ratio.

Plan and status of R&D for the demonstration test for the head-end process using the spent fuel from HTTR

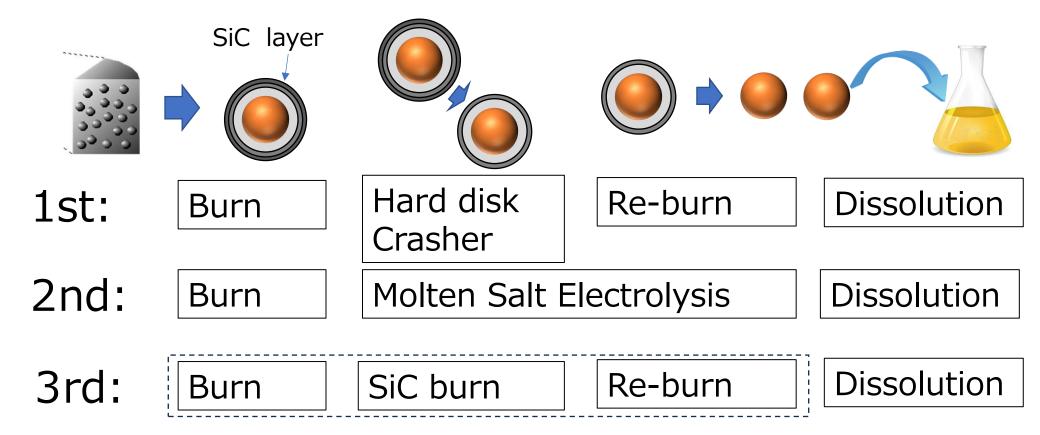
Plan for the Demonstration Test using the Spent Fuel from HTTR

The R&D have been performed as the part of demonstration HTGR plan in GX (Green Transformation) policy of METTI.

	2024	2025	2026	2027	2028	2029	2030		20XX
Commercial plant	Concept investigation	Conceptual design							
Element test									
Process of fuel compact	Investigation		1st Test		2nd Test			/	
Process of CFP	Investigation	Equipment fabrication			2nd Test				
Process of fuel kernel	Investigation	Equipment fabrication	1st Test		2nd Test				
Demonstration test									
Equipment				Conceptual design	System design	Fabrication design	Equipment fabrication		
Test site		Site inve	stigation				Equipment deployment	Der	nonstration test
IEST SILE		SILE IIIVES	แฐลแบบ			1	αεριογπεπι		

R&D and test equipment fabrication will be completed in 2030.

Result of Technology Review for Head End Process


To confirm suitability for commercial use, the feasibility for each element technology for the head end process was investigated.

Part		Process	Compact	ОРуС	SiC	IPyC/Buffer	Kernel	
			∆ Waste	∆ Waste				○ Feasible
Fuel	Base	Burn (Atmospheric env.)	Amount	Amount	_	_	_	$ $ \triangle Subjects
Compact	Base	Burn (CO ₂ Env.)	0	0	_	—	_	to be solved
Process		Electrical Disintegration (Pulse)	☐ Few Example	_	_		_	×Not Feasible
	Alt.	Electrical Disintegration (Constant Current)	0	_	_	_	_	
	Base	Mechanical Crush (Hard Desk Crusher)	_	_	△ Remote Control and Maintenance	_	_	
CFP	Alt.	SiC Burn (Air env.)	_	_	\triangle Control of Env.	_	_	
Process	Alt.	SiC Burn (Halogen env.)	_	_	× Selection of Material	× Selection of Material	-	
	Base	Re-burn	_	_	_	0	_	
	Alt.	Molten Salt Electrolysis	 Large Amount		△ Demonstration of Principle	△ Demonstration of Principle	_	
Kernel Process		Dissolution	_	_	△ Effect to Dissolution	_	0	
	Base	Recovering Residue Clarification	_	_	△ Deference of Density	-	0	

Even in the hard desk crasher used in NFI, there is subjects to be solved for spent fuel processing.

Candidates of Head End Process

Now, JAEA have developed equipment for demonstration using HTTR spent fuel. The candidates the head end process to be demonstrated in order to the priority:

JAEA will develop the most suitable process of the head end process, and demonstrate it in 2030's.

Summary

JAEA introduced the status of R&D of back-end technologies of HTGR and the plan for the demonstration test to using HTTR spent fuel.

For R&D of back-end technologies of HTGR:

- > Japanese basic policy for fuel cycle is reprocessing from resources.
- > Japan had completed the reprocessing for LWR.
- Head-end process of reprocessing for HTGR had also completed, and applicability to RRP had been also confirmed.

For R&D of demonstration test using HTTR spent fuel:

- JAEA started the R&D in 2024 with the GX budget from METI as a part of HTGR demonstration program.
- The candidates of head-end processes are a hard disk crasher process, a molten salt electrolysis process, and SiC burn process.
- JAEA will develop the most suitable process and demonstrate it in 2030's.