Facilitating SMR fuel fabrication from HALEU UF₆

Dr. Marina Sokcic-Kostic, Ninomiya Nobuaki, Christopher Reiser, Karl Froschauer, Dr. Georg Brähler, NUKEM Technologies Engineering Services Karlstein am Main, Germany

Overview

- 1. NUKEM's fuel production history
- 2. Major SMR concepts and their fuel
- 3. SMR fuels from HALEU UF₆ deconversion
- 4. Metallic uranium vs. HTR TRISO fuel production route
- 5. High temperature Small Modular Reactors (HT-SMRs)

THTR-300, Hamm-Uentrop

1. NUKEM's Fuel Production History: UO₂ and U metal

- NUKEM/Siemens Fuel plant (RBU, Reaktor Brennelement Union) in Hanau Wolfgang (Germany)
 - 1950's: Fuel assemblies from U-metal, FR2 (Karlsruhe), ECO (ISPRA)
 - 1960's: UAI_x in AI, up to 93% U-235 (HEU), FA for material test reactors (MTR)
 - 1970's: AUC pilot plant, 93% U-235 (HEU), for Oxide based (UO₂) FA, production route for all German power reactors
- 1980's-2000's: AUC/U metal plant (BATAN, Indonesia)
 - for MTR by Siemens
 - HALEU, up to 20% U-235
 - Rework/recycling included

1. NUKEM's Fuel Production History: HTR fuel

- 1960's: German HTR program
 - NUKEM's responsibility: Fuel specifications, Fuel element design and manufacturing process
- 1970's: HTR fuel plant (HOBEG) in Hanau (Germany)
 - > 250 000 Fuel Spheres for experimental AVR, Jülich
 - > 1 000 000 Fuel Spheres for THTR-300, Hamm-Uentrop
- 2000's: **PBMR** Project in South Africa (PBMR Pty. Lt.)
 - Basic, Detail And Procurement Design
 - Unfortunately stopped during procurement phase due to financial reasons
- 2010's: Laboratory-scale facilities
 - Indonesia
 - South Korea

1. The Spherical HTR Fuel Element

2. Major SMR concepts and their fuel

4. Metallic Uranium Fuel Production Route

U metal production

1. $UF_6 + (H_2O/CO_2/NH_3) \rightarrow AUC + (NH_4F)$ 2. $AUC + (H_2) \rightarrow UO_2 + (NH_3/CO_2/H_2O)$ 3. $UO_2 + 4HF \rightarrow UF_4 + (4H_2O)$ 4. $UF_4 + 2Ca \rightarrow U + (2CaF_2)$

Calciothermic reduction (4.)

- Inside graphite crucible
- Filled with UF₄/Ca mixture (5 kg U)
- Heating up to ignition
- Regulus with more than 90% yield
- Scrap recycled via recovery

4. HTR TRISO Fuel Production Route

4. HTR Fuel Production – Kernels

- Kernel Casting
 - Drip casting of Kernels
 - ADU Precipitation from Uranyl nitrate and additives
 - ➤ UO₂ or UCO-based

4. HTR Fuel Production – Kernels

- Kernel Casting
- Ageing, Washing, Drying (AWD)
- Calcining
- Sintering
- Sieving, Sorting, Sampling and Portioning (SSSP)

4. HTR Fuel Production – Coating Facility

NUKEM Technologies

- NUKEM Coater
- Key equipment to achieve standard quality fuel
- Chemical Vapor Deposition (CVD) Coating with Acetylene, Propylene and MTS
- Sieving, Sorting, Sampling and Portioning (SSSP)

4. HTR Fuel Production – Fuel Facility

UO₂ Fuel Kernel Coated Particle

Fuel Compacts **Fuel Spheres** Fuel Compact or Fuel MGP Sphere Pressing CP OCPs are filled into pressing moulds OCP 5 mm Fuel Free Zone **Coated Particles** in Graphite Ma vrolytic Carbon Lav Fuel Sphere Pressing Line, (NUKEM HOBEG, Hanau, Germany) TRISO

4. HTR Fuel Production – Fuel Facility

Fuel Spheres

Fuel Sphere Pressing Line (NUKEM HOBEG, Hanau, Germany)

- Carbonizing (800 °C)
- Annealing (1900 °C)
- Final Quality Control

4. HTR Fuel Plant - Uranium Recovery

5. High temperature SMRs

- Nearly all reactor designs (established to Gen IV) can be designed as SMR
- Common HTR concepts:
 - High-temperature gas-cooled reactor (HTR), outlet: 750 °C
 - Very-High-Temperature Reactor (VHTR), outlet: 1000 °C
- Advantages of high temperatures:
 - Replacing fossil fuel generated process heat
 - e.g., synchronous electricity and hydrogen production via high-temperature water electrolysis
 - High thermal conversion efficiency

5. High temperature SMRs

- Advantages of the SMR concept:
 - Less fissile material increases safety
 - > Standardisation of components
 - > Design **integration** to reduce complexity
 - Flexible application in industrial cluster areas: less grid restrictions
- Inherent safety features of the HTR concept:
 - Retention of fission products (TRISO fuel)
 - Core meltdown impossible: heat can always passively dissipate even without an active helium cooling circuit
 - Small core power density (compared to PWR)
 - Large heat capacity and temperature stability of graphitebased reactor cores

Questions?

Criticality Safety - Practice

• Safe Mass principle is avoided wherever feasible

Slab Tank

Tube Array Tank

Criticality Safety - Principles

