
FASTER SIMULATIONS. BETTER DECISIONS. 



Motivation
● Design iteration in fusion is slow

○ Many complicated physical systems with incomplete understanding of 
underlying physics

○ Most systems/components have interdependencies
○ Cost of high fidelity multiphysics simulations is prohibitively expensive for 

routine use in reactor design

● Meanwhile in last ~5 years, ML for physics has exploded
○ Significant advances in e.g. ML for CFD and weather modeling
○ ‘Moonshot’ promise of surrogate modeling is:

■ Training on experimental data yields models closer to ground truth
■ High fidelity, full physics models
■ Fully connected systems
■ Faster learning from experiments, reduced dependence on ROMS
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What we’re currently working on

CFD/MHD

Transformer neural operator 
with Quadtree geometry 
construction at each 
timestep

Neutron transport

Monte Carlo / Neural 
Operator model

Gyrokinetics

Function 
autoencoder with 
latent diffusion 
model



Neutronics



CFD/MHD

First time-adaptive 
transformer neural operator

- Discretisation convergent 
model

- Incremental quadtree 
construction for 
AMR/transient features

- Transformer for superior 
generalisation across 
physics/geometries + 
scalability



Figure: Z-Pinch simulation: Zenithon surrogate model (runtime < 8ms) vs. the 
full MHD simulation (runtime ~5 hours).

http://www.youtube.com/watch?v=hh9CdWtkOaQ
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Motivation

The Challenge
The Bottleneck: High-fidelity Gyrokinetic (GK) solvers are too expensive for iterative
profile optimization or real-time control (∼ 105 core-hours).
The Physics Need: Accurate confinement prediction requires resolving electromagnetic
turbulence across disjoint spatiotemporal scales.
Critical Outputs: Beyond scalar fluxes, modern analysis requires full field data for
potentials (ϕ,A∥) to diagnose zonal flows and saturation mechanisms.

The Solution
A probabilistic diffusion framework bridging the speed of TGLF with the fidelity of nonlinear
gyrokinetics.
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Gyrokinetics: The High-Fidelity Standard

Schematic Gyrokinetic Equation

∂ha
∂t − i(ωθ + ωξ + ωd)Ha + c

ψ′ [f0a + ha,Ψa] =
∑

b
CGK

ab

State Variables: ha (non-adiabatic dist. function); Ha (includes adiabatic response).
Linear Drifts: Parallel streaming (ωθ), particle trapping (ωξ), toroidal magnetic drifts
(ωd).
Nonlinearity: Poisson bracket [·, ·] captures EM effects via generalized potential Ψa.
Collisions: CGK

ab is the linearized, gyro-averaged Fokker-Planck operator.
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TGLF: The Reduced-Order Model (ROM)

Trapped Gyro-Landau Fluid (TGLF)
Solves a linear gyrofluid eigenproblem:

−iωk X⃗k = L(ky ; p) X⃗k

L depends on local parameters p (gradients a/LT ,n, geometry q, ŝ, β, collisions).
Quasilinear Fluxes: Calculated by combining linear eigenmodes with analytic saturation
rules (e.g., SAT2).

Limitation
TGLF is fast but relies on scalar approximations and cannot generate high-fidelity, nonlinear
turbulence structures.
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Function-Space Diffusion (FunDiff)

Concept
An encoder-decoder pair E ,D maps
physical functions f to latent codes
z ∈ RD.
A latent diffusion model learns the density
on RD.

Wasserstein Error Bound

W1(P, P̂) ≤ E∥f − D(E (f ))∥︸ ︷︷ ︸
Reconstruction Error

+ Lip(D)W1(p, p̂)︸ ︷︷ ︸
Generative Error

TurboTGLF Strategy:
Conditioning: TGLF maps equilibrium x to state r = R(x).
Generation: Nonlinear GK defines a conditional distribution Pr ≡ P(f ,Q | r).
Goal: Train a conditional latent model p̂r (z) = pθ(z | r) to generate turbulence
consistent with the TGLF state.

Higginbottom et al. (Zenithon AI) FunDiff for GK Turbulence
IAEA Workshop on Digital Engineering December 10, 2025
5 / 12



Model Architecture

1 Function Autoencoder (FAE): Maps Fourier fields U(kx , ky ) to latent z . Enforces
Hermitian symmetry and spectral constraints.

2 Conditional Latent Diffusion: A transformer models pθ(z | r), where r includes TGLF
growth rates, frequencies, and flux predictions.
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Inference, Distillation, and UQ

Inference Pipeline
1 Reverse-time ODE: Integrate from Gaussian noise using the learned network + TGLF

state r .
2 Decoding: Map latent z back to continuous Fourier fields U(kx , ky ) and flux Q.

Capabilities
Distillation (Future): Student network mimics trajectories in few Euler steps for
millisecond inference.
Uncertainty Quantification: Drawing an ensemble {(U(m),Q(m))} for fixed r provides
credible intervals for transport.
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Benchmark: Canonical Kolmogorov Flow

Problem Setup:
2D Kolmogorov flow (Navier-Stokes) on (0, 2π)2 with periodic forcing.
Constraint: ∇ · u = 0 (Incompressible).
Challenge: Reconstruct full turbulence from sparse, noisy downsampled observations
(simulating ROM conditioning).

Physics-Informed Decoder:
Predicts stream function ψ rather than raw velocities.
Velocity recovered as (u, v) = (∂yψ,−∂xψ), guaranteeing divergence-free output by
construction.
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Results: Accuracy and Robustness

Relative ℓ2 error vs. downsampling. FunDiff
outperforms neural operators. Physics-constrained model (Blue) beats data-only

(Red), especially at high noise.
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Results: Visual Reconstruction

Observation: Generated fields remain numerically divergence-free while capturing complex turbulent
structure, even under unconditional generation.
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Contributions & Future Work

Key Contributions
Rapid generative modelling framework
for hybrid workflows (Qualikiz/TGLF).
Continuous decoder for Fourier-space
fields, robust to resolution changes.
Physically constrained outputs (e.g.,
Divergence-free, Hermitian).
Built-in ensemble uncertainty
quantification.

Next Steps
Train on larger, heterogeneous datasets.
Ablation studies over different physics
constraints.
Test flow matching models for mean
flow processing.
Integrate with full-core transport solvers.
Finalize distillation for real-time control.
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