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Motivation
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e Design iteration in fusion is slow
o Many complicated physical systems with incomplete understanding of
underlying physics
o Most systems/components have interdependencies
o Cost of high fidelity multiphysics simulations is prohibitively expensive for
routine use in reactor design

e Meanwhile in last ~5 years, ML for physics has exploded
o Significant advances in e.g. ML for CFD and weather modeling i
o ‘Moonshot’ promise of surrogate modeling is: !

m Training on experimental data yields models closer to ground truth iy
m High fidelity, full physics models ,/;/;’552':
m Fully connected systems
m Faster learning from experiments, reduced dependence on ROMS /C’/";';’:;'
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What we're currently working on

Neutron transport

Monte Carlo / Neural
Operator model

CFD/MHD

Transformer neural operator
with Quadtree geometry
construction at each
timestep

Y
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Function
autoencoder with
latent diffusion
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Solve PDE by

# v

\\'oAS Estimates
Giwoslal(§)

Neutronics

Input: Geometries
& Boundary Conditions

ming||Gg[a](€) — Gy.wos[al ()13

Solve PDE using
arbitrary Neural Operator
architectures

kO *

NO Predictions

Ggla]($)

Predicting
Unseen Geometries
& Boundary Conditions
& PDE Coefficients

; @® ¢ ¢ d
| PV | V¥ | PV | PV |
GT PINO DeepRitz WoS

ZENITHON
Al



transformer neural operator

CFD/MHD

First time-adaptive

Discretisation convergent e (IS
model

Incremental quadtree
construction for
AMR/transient features
Transformer for superior
generalisation across
physics/geometries +
scalability
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Figure: Z-Pinch simulation: Zenithon surrogate model (runtime < 8ms) vs.

full MHD simulation (runtime ~5 hours).
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http://www.youtube.com/watch?v=hh9CdWtkOaQ

Physics Informed Function-Space Diffusion for Rapid

Gyrokinetic Turbulence Modelling
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Motivation

The Challenge

e The Bottleneck: High-fidelity Gyrokinetic (GK) solvers are too expensive for iterative
profile optimization or real-time control (~ 10° core-hours).

@ The Physics Need: Accurate confinement prediction requires resolving electromagnetic
turbulence across disjoint spatiotemporal scales.

@ Critical Outputs: Beyond scalar fluxes, modern analysis requires full field data for
potentials (¢, A|) to diagnose zonal flows and saturation mechanisms.

A probabilistic diffusion framework bridging the speed of TGLF with the fidelity of nonlinear
gyrokinetics.
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Gyrokinetics: The High-Fidelity Standard

Schematic Gyrokinetic Equation

Oh,
ot

_ c
— i(wp + we + wa)Ha + J[ﬁ)a + hy, W] = § , Co'
b

e State Variables: h, (non-adiabatic dist. function); H, (includes adiabatic response).

o Linear Drifts: Parallel streaming (wy), particle trapping (w¢), toroidal magnetic drifts
(wa)-
e Nonlinearity: Poisson bracket [-, -] captures EM effects via generalized potential V.

e Collisions: CaGbK is the linearized, gyro-averaged Fokker-Planck operator.
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TGLF: The Reduced-Order Model (ROM)

Trapped Gyro-Landau Fluid (TGLF)
@ Solves a linear gyrofluid eigenproblem:
—iwk)?k = ﬁ(ky; p) Xk

@ L depends on local parameters p (gradients a/Lt ,, geometry q,5, /3, collisions).

@ Quasilinear Fluxes: Calculated by combining linear eigenmodes with analytic saturation
rules (e.g., SAT2).

TGLF is fast but relies on scalar approximations and cannot generate high-fidelity, nonlinear
turbulence structures.
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Function-Space Diffusion (FunDiff)

Concept
@ An encoder-decoder pair E, D maps Wasserstein Error Bound
physical functions f to latent codes R _ A
PRD. Wi(P, B) < E|If - D(E(F))]| + Lin(D)WA(p. p)

Reconstruction Error Generative Error

@ A latent diffusion model learns the density
on RP.

TurboTGLF Strategy:
e Conditioning: TGLF maps equilibrium x to state r = R(x).
e Generation: Nonlinear GK defines a conditional distribution P, = P(f,Q | r).

e Goal: Train a conditional latent model p,(z) = py(z | r) to generate turbulence
consistent with the TGLF state.
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Model Architecture

@ Function Autoencoder (FAE): Maps Fourier fields U(ky, k) to latent z. Enforces
Hermitian symmetry and spectral constraints.

@ Conditional Latent Diffusion: A transformer models py(z | r), where r includes TGLF
growth rates, frequencies, and flux predictions.

Higginbottom et al. (Zenithon Al) FunDiff for GK Turbulence



Inference, Distillation, and UQ

Inference Pipeline

© Reverse-time ODE: Integrate from Gaussian noise using the learned network + TGLF
state r.

@ Decoding: Map latent z back to continuous Fourier fields U(k, k,) and flux Q.

Capabilities

o Distillation (Future): Student network mimics trajectories in few Euler steps for
millisecond inference.

o Uncertainty Quantification: Drawing an ensemble {(U(™), Q(™)} for fixed r provides
credible intervals for transport.
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Benchmark: Canonical Kolmogorov Flow

Problem Setup:
@ 2D Kolmogorov flow (Navier-Stokes) on (0,27)? with periodic forcing.
e Constraint: V- u =0 (Incompressible).

@ Challenge: Reconstruct full turbulence from sparse, noisy downsampled observations
(simulating ROM conditioning).

Physics-Informed Decoder:
@ Predicts stream function 1 rather than raw velocities.

@ Velocity recovered as (u, v) = (01, —0x%)), guaranteeing divergence-free output by
construction.
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Results: Accuracy and Robustness
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Results: Visual Reconstruction

-2 - 1 2 3

Observation: Generated fields remain numerically divergence-free while capturing complex turbulent
structure, even under unconditional generation.
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Contributions & Future Work

Key Contributions Next Steps
@ Rapid generative modelling framework @ Train on larger, heterogeneous datasets.
for hybrid workflows (Qualikiz/ TGLF). @ Ablation studies over different physics

@ Continuous decoder for Fourier-space constraints.

fields, robust to resolution changes. @ Test flow matching models for mean

@ Physically constrained outputs (e.g., flow processing.

Divergence-free, Hermitian). @ Integrate with full-core transport solvers.

@ Built-in ensemble uncertainty
quantification.

e Finalize distillation for real-time control.
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