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Multiphysics in Fusion
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R&D Challenges

Data Transfers

Mesh-based
T/H geometry

Monte Carlo
geometry

Highly manual process to build
geometries and exchange data
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Need a general-purpose capability




R&D Challenges

lterative Methods

com bine\stochastic;and lmatrix-basedII methods
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R&D Challenges

Software and Parallelization
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Need to leverage GPUs and be
designed with performance in mind

Scarce open-source high-fidelity
multiphysics software

Performant & open source important




Cardinal: High-fidelity Multiphysics for Fusion



Cardinal
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OpenMC ﬂ EPETSQ NekRS

C++ Monte Carlo radiation transport + C++ spectral element turbulent
depletion incompressible flow; induction &

MOOSE: multiphysics framework inductionless MHD

Extensible, modular C++ classes to define physics model components
(parallel communication, mesh-to-mesh data transfers, kernels, materials, ...)
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Blg' PictUre: add openMc and NekRS to a large “toolbox” for fusion simulation
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Some Notable Software Features

Automatic re-generation
of CAD geometries to
capture feedback

surfaces bounding each cell



Some Notable Software Features

Continuous geometry
deformation is directly
used in OpenMC

Displacement magnitude \ Displacement magnitude
(from MOOSE thermomechanics) (from MOOSE thermomechanics)

Cardinal generates OpenMC Cardinal generates new OpenMC
mesh geometry mesh geometry

Initial condition After Picard iteration 1

Thermomechanics feedback to Monte
Carlo neutronics



Some Notable Software Features Sandia study quantified ~80% of CFD

engineers’ time spent on mesh generation!

Continuous geometry T T 7 1 || Lagrangian Point
deformation is directly —_— L | |
used in OpenMC

Displacement magnitude \ Displacement magnitude \
(from MOOSE thermomechanics) (from MOOSE thermomechanics)

Cardinal generates OpenMC Cardinal generates new OpenMC
mesh geometry mesh geometry

Automatic re-generation Initial condition After Picard iteration 1
Of;Alt)u?:?;:Zg:skto Thermomechanics feedback to Monte Immersed boundary methods for CFD of
P Carlo neutronics complex geometries

surfaces bounding each cell



Adaptive mesh refinement for breeder blankets



Monte Carlo Tallies

[ Spatial resolution ]

Nuclear heating

Tallies are inputs to T/H,

mechanical, and material analysis...
% on different length scales




Monte Carlo Tallies

[ Spatial resolution ] [ Runtime, Statistical Error, and Stability ]

Nuclear heating

Tallies are inputs to T/H, i ' ‘ﬂj ’ 8.6280+05
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Statistical error and/or finer resolution
can also destabilize Picard iteration




Adaptive Mesh Refinement in Cardinal

Cardinal
(VMOOSE

Elements Marked esults from CONSTANT
for Refinemen t/ Unstructured
Coarsening Mesh Tally MONOMIAL
Adapted New Tally
Mesh

#)OpenMC

®* Tndicators: estimate of errorin each element
* Markers: decide which elements to refine/coarsen



Group

Adaptive Mesh Refinement in Cardinal »-Jr.
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Results from CONSTANT
for Refinement / Unstructured
Coarsening Mesh Tally MONOMIAL
Adapted New Tally
Mesh Mesh

9)OpenMC

L J

Y
Isotropic refinement element amalgamation

. ValueJumpIndicator: th(u —u,)%dS
® An OpenMC unstructured mesh tally is re-

Initialized on each adaptivity cycle VectorMagnitudeIndicator: /hfIIﬁIIdV
® Any number of adaptivity cycles are allowed
within a single Picard iteration - AMR subcycling VectorJumpIndicator: \/hf(l_i — Uu,)%dS

® Tallies are constant monomials (for now) ElementOpticalDepthIndicator: S h
. X



HCPB Outboard Blanket Module

Pressure tube (EUROFER 97)

Cladding (EUROFER 97)

Breeder (Li,SiO, pebble bed with
e = 0.35)

Multiplier (TiBe,,)

Filter (EUROFER 97)

Tungsten

Remaining structural
materials are EUROFER 97

CAD generated with Hypnos, a parametric geometry engine for blanket design developed by the UKAEA:
https://qgithub.com/aurora-multiphysics/hypnos



https://github.com/aurora-multiphysics/hypnos
https://github.com/aurora-multiphysics/hypnos
https://github.com/aurora-multiphysics/hypnos
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Applying AMR to DPA on the First Wall

Combining an inverted ElementOpticalDepthIndicator with the ErrorFractionLookAheadMarker
otal,c=0.3,t=1%

——— | ‘ i
NRT DPA Elements Marked for Refinement
Refinement Cycle: 0.000000



Next Step: Multiphysics-Driven Adaptivity
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Neutronics to accelerate fusion materials development
Liquid metal MHD experiments
Reticulated foam extraction systems



CORTEX: Fusion Materials Database + Neutronics/TEA Analysis
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Database

fabricated composition
mechanical properties
thermal properties
manufacturing details

NRT-dpa

Transmuted compositions
Flux, PKA spectra
Shutdown dose

Radwaste classification
Nuclear heating

Up-scaled material environment
Data exploration GUI

Ranked production pathways
Side-by-side comparison
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\ Add custom geometry ... )

auto-populate
database with results

Neutronics screen

pull material
data, run
radiation
transport

vacuum vessel
support structure
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pull material |
data, run
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CORTEX Materials Database

example

fim . E: = s 3 &) =~ ® &
€ > (&) %5 ‘'ome available %
S5 + Operating Cenditions Geometry
o CORTEX o | B [ c o | & | F — e | w Ty ®- -
.
s [Name Eurofer 97 string between 1 and 100 Enter the name of your material | | |
[ | | [ I | | |
5 |Density 19|number of f g/cm3 between 1 and 25 | Enter the density of your material during in-service conditions.
3
’ iti | | [

Enter the composition of your material. The components of a material must ALL be given in weight % or ALL be|
given in atomic percent. Neutronics simulations will use the "arget" value if provided. If the "target” value is not
provided, the midpoint of the max/min range will be used, unless the "min" value is zero in which case the

s is used g a conservative app for One element or nuclide can be indicated
as "balance” in order to fill the remaining material components to 100% weight percent or 100% atomic
percent.

° [ [ [ [

10 Weight % Atom %

11 Element or Nu [Min [Max Target  [Min [Max

12 [C 0.11

3 |Cr 8.00

W 1.10

5 [Mn 0.40

FouEi 6 |V 0.15 0.25
AirDrop 17 |Ta 0.12
Recent= || [N 0.03
19| [P 0.01
Applicatig 20| [g 0.01

21 |B 0.00

22 |0 0.01

23 |Fe balance

24 INb 0.00 0.01

25 |Mo 0.00 0.01

26 ’W 0.00] 0.01

27 [/ nnal Ao

. Text balance
S
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https://sirepo.com/cortex
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https://sirepo.com/cortex

CORTEX Materials Database
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PbLi MHD Experimental Facility: MAGNES ()

NekRS MHD simulations of
experimental test section.

Engineering significance of MHD:

® MHD pressure drop

® Suppression of turbulence

® Flow distributions: cooling, recirculation, stagnation Evolution from
°

Mass transfer: tritium permeation, plate-out/collection of high-melting hydrodynamic flow to
point impurities ; e Hunt MHD flow

Computational challenges:

)« Test
Section 2

\ Test

Section |

® Hartmann and side layers scale as 1/Ha, 1/VHa
® Numerical stiffness, At ~ 1/Ha?

Flow
Conditioner

New MHD facility being commissioned at Univ. of Wisconsin,
Madison through FIRE using ~5 T field near WHAM magnets.

® Develop open-access benchmark data for isothermal PbLi MHD flOwS  giectromagnetic
(up to Ha ~ 4000): insulations, advanced heat exchange surfaces, ... P

® Validate MHD codes

® Develop MHD pressure drop library to facilitate systems-level design

EM Flowmeter

Grayloc Flange Test
Connector

Section 2

Experimental team: Juliana Pacheco-Duarte (UW), Craig Jacobson (Realta Fusion) '\ Flow _ Test
Computational team: April Novak (UIUC), Rogerio Jorge (UW) Conditioner Section 1



® High surface area capillary foams for tritium extraction

® NekRS immersed boundary method based on direct forcing approach with

overlapping meshes
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Chase Taylor (INL)

Preliminary NekRS immersed boundary
simulation of reticulated foam



Concluding Thoughts

® (Code interoperability will benefit multiphysics simulations, multiscale techniques, and UQ/SA. But

code-specific workflow challenges remain for

O CAD-based neutronics modeling

@) Meshing for CFD } Hard to “parallelize

® Software quality assurance (SQA) will be important for fusion and is a huge undertaking — we are
QA’ing non-MOOSE codes via MOOSE (e.g. NekRS)

® \We are building an open-access fusion materials database (https://sirepo.com/cortex) which is

linked to fusion neutronics device/component models

O  Suggestions for this tool to support your needs?
O  We welcome material data contributions — do you have datasets you'd like us to upload?

® Community requests for MHD test sections for MAGNES?


https://sirepo.com/cortex

Questions?

https://cardinal.cels.anl.gov
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