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Overarching Goal: Enable self-consistent, multi-fidelity, iterative
optimization workflows for the fusion reactor design process

multi-fidelity

A
A

Design Scoping Design Optimization Digital Twin

Lower fidelity: large Medium-fidelity: de-risk High-fidelity: full systems
parameter space scans components, sub-systems evaluation, pulse design

Control, Sustain, and . .
Predict Burning Plasma PN Want to catch design issues
4 ‘» at appropriate fidelity level
multi- T
physics Handle Reactor

SCIENCE DRIVERS

Relevant Conditions C

Harness Fusion Power

Pre-conceptual Design [1  Conceptual Design [1  Design to Build

#(OAK RIDGE

National Laboratory



5

The challenge of integration

%

Multi-physics Examples of multi-physics integrated analysis
— CFD+neutronics+thermal...etc. Systems Code Design Optimization Digital Twin
— Multi-fidelity (high fid. vs. surrogate) low-fidelty medium-ideliy high-fideity
i- Core burning plasma scenario . cCoe |
MU"' Sque + required heating & current drive —
: | Edge |
— Micro- to macro-scales
. ] Time-dependent mechanical analysis
e Tungsten crackingll component failure (cyclic fatigue, transient loading)
— raulics
« Plasma turbulencell fusion power 4
. Magnet coil placement,
Across-regu)ns' sysfems mechanical stress, shielding
Llﬂklﬂg core edge wall plasmo First wall and divertor cooling CET\;D
___EM |

- Single component to whole device
— Validation across devices, parameter space
- Remote maintenance strategy

Temporal

First wall and vacuum vessel lifetime

(erosion, nuclear damage, activation, swelling, creep, cracking)

Blanket breeding, shielding, cooling

— Device evolution (ramp up/down, transients), lifetime
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FREDA's approach: flexible component-based framework & data structure

Framework & Workflow
Capable of integrating swappable modules with diverse CPU/GPU requirements

| System State File |

Plasma State File Geometry State File Engineering State File

| Elmer
FASTRAN  EFIT NUBEAM C1,C2 First Wall Blanket OpenMC
TGLF ~ DCON = TORAY BOUT++ _ MCNP SHIFT DIABLO openFOAM

NCLASS GATO  GENRAY SOLPS Divertor CS col
I FEH PF coil TF coil HU&?;G?C'S
/ I i | \
/ Driver I Drlver Driver \
/ ! / | l \
/ Driver \ |
/ \
Fusion-Plasma Parametric Geometry Fusion-Engineering
* Based on the open-source IPS * Includes systems codes * Includes multiphysics tools from Fusion
(Integrated Plasma Simulator) and parameterized Energy Reactor Models Integrator
developed over decade of SciDACs geometry representation (FERMI) developed through Arpa-E
(Pl: JIM Park) (Pl: Vittorio Badalassi)

1 aiming to use mainly open source
AKX RIDCE 0 will initially 06891% tokamaks/STs, potential for expansion to stellarators



Plasma Approach: IPS

e |PS has been used in variety of studies

FREEGS - Steady-State Compact Advanced Tokamak reactor
CHEASE Buttery Nucl. Fusion 61 046028 (2021)

- Projection and validation on DIII-D, KSTAR
Park PoP 25 012506 (2018)

FASTRAN/TGLF EPED1 C2/GTNEUT

g/

s . Lorge pOereTer space scans
— e 25, 12,
g 4 A 20. 10+ 15“). p'us(Mw)
o oikD - 4 —~
T o4 . 10 ‘ 750
Cu) data 5/ |°(MA) : new“ow/ma) ggg /
Ojo " 21 23 Q9 " 21 23 %9 21 23
0 T T T T T 6, 12 1.0
17 18 19 20 21 22 23 24 5/ " |10] Qs | 08l fos
radius : 81 S, | aad
[\ 31 6 el | i
2 4 04
2.0 B 1. B(T) 2 0.2
4, }GZ Vv (5,‘% 151 %o 21 23 %9 T2t 23 999 21 23
Aspect Ratio
Fo%* GENRAY g TGLF+EPED e
S5 TORAY © 051 vs DIII-D exp.
10r00 l[;OG 3CIIDCI 40I00 SOIGO GDICID 70'00
Time
(ms)
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FY25 plasma development highlights

« Key focus: connecting the plasma to PFCs

BOUT++/Hermes-3 First wall heat flux
10 - . Routinely map
3 ; — H:;;‘::Dn the predicted
| E 1004 «" heat flux to PFCs.
u =
of = 10!
z | :
102 = i : : |
14 0 2 4 V]
Distance along the wall [m]
SOLPS-ITER + HEAT
° \_/—_\_/
2?5 3.'0 3:5 4'.;0 4.'5 5"0 S.'S NE 1 01 | Radiation
BOUT++ with boundary masking, % (oo
IPS-HEAT (SOLPS) components added
107, Neutral

0 1 2 3 4 5 6 7
Distance along the wall (m)
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FY25 plasma development highlights

« Another key focus: developing faster divertor, PFC design workflows

A new parametric divertor tool is being used to generate SOLPS-ITER grids and specify the PFC boundary

automated scans Al/ML generated grid interactive option

06 Frac. total emitted flux per un 2, A5 ™m@ Q4

I
Z | 0.35
e 22t |

\

-0.7

0.3
-0.8 i

0.25

0.2

0.15

118

1.2 0.1

Still To-Do-: automated checks and input
parameter tuning of SOLPS or BOUT++ runs

1.3 0.05

-1.4 ;
1.6 1.7

OAKR Uses semi-analytic neutral particle model to
%Nﬁﬁmiﬂaﬁe see response to geometry change

0

1.8 1.9 2 21




Plans for Fusion-Plasma Improvements

(Holland SciDAC)

Year 1 Year 2 Year 3 Year 4
I’ I’ ? ®. © ® ® ) 4 )

Couple SOLPS-ITER, aufo-grid « Connect plasma to PFCs

UEDGE, BOUT++ generation
I . . .
Add missing blasma model fast-ion core pellet plasma RF models  high fidelity core
I35ing plasmd modets fransport fueling breakdown  (Bonoli SCIDAC) fransport
|
. . free boundary GPU
Enable whole pulse simulation i TGLF/EPED

The frontier: integrating materials prediction into reactor design

Core || Edge
T.(keV)
Separatrlx—f——-) J —l

Pedestal | : |

T 1 | map heat &
- particle flux to

components

plasma
scenario

Heat flux —»

no damage regime

o - N w S w (o]
T T T

- When will degraded
FW/divertor affect
plasma performance?

- When will SLAG
become a problem

1 |
|
|

1 |

1

! L L L 1
0 0.2 04 06 0.8 1
‘ r/a

*(QAKRIDGE define operating limits <—— impurity influx e———
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materials models

Temperature —> (tritium retention, UFOs)

thermo-solid mechanics +



Engineering Approach: FERMI

Reactor geometry ‘Cubit CAD--] ~ meshed reactor "Cubit-DAGMC\ \ DAGMC ‘_ ) ’ N (=
R | e L iy ] P (Code) () (e
- |r - Y
/ t > SCALE ) M '|'|
=>F—— > : , . ®
plasma plasma \ .| MCNP | . S < \ OS y Open Scurce
) > ooenMC ’— Shift Reduction ‘ Denovo
shape heating > OP , L\ | | Weight Windows ) ) ° A” Oble .|.O run Oﬂ
L | |
1
v v v v v v
IPS & Tetrahedral power e i | Fine-cartesian
L Tritium Fine-group Magent '|'
FASTRAN ey | |breedingratio| |cel flux tallies| | ™% 1> ' fluence ’ SU perCOI I IpU ers
v v v , v , v )
‘ fusion plasma ’ plasma ’ | SCALE/ | | PyNE/ ) . - .
power || profiles || stability ORIGEN | | ALARA | material activation energy deposition displacement
v v ]
Nesion s B e
distributi :
(Iél’)l( l;lgl; ‘ heat over time photon source
Plasma Physics . S0 o
\F y Neutronics L s
material
properties = A ,
ﬂow. > Cublth(;FD v v\ / —ﬂ Exodus ’
properties __meshing ﬂ'Fields mapping _—
N v - tool
hexahedral \_ (MapFields) )
mesh
"7 ‘ —LV 2
| L openFoam | Rl ’
; = . { } l [Badalassi Fusion Sci. Tech., 79 (2023)]
. Temperature Electric
F:;)r\g sf;)ll;cr::s’ Electric flux :i’:’?;’::‘f‘{; Displacements | ;4 heat flux ‘ potential ‘
A A J 0 0
preCICE 5

\ Thermal Hydraullcs; ‘Structural Mechanics/




FY25 engineering development highlights

Multi-fidelity benchmark of magnet coil casing stress
(analytic model, Elmer, Diablo, MFEM-FE)

2500 .

o Diablo Displacement Displacement

% I(E\ggAnEE/\ises) ~ = inz (mm) 51 MFEM-FE in z (mm)
10 \ 20

o 1500 . 5 £3 . 10

500 L . -10 v -20
34 38 42 46 50
B; (T)
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FY25 engineering development highlights

Multi-fidelity benchmark of magnet coil casing stress
(analytic model, Elmer, Diablo, MFEM-FE)

2500 .
Diablo ;
o ! Displacement Displacement
o ELMER - in z (mm) 51 MFEM-FE in z (mm)
S (von Mises) 10 ! \ 20
o 1500 - 5 £3 W 10
5 — | 1] ‘ ad 10
e : .5 -
500 y : - -10 1 3 R(m)5 7 . -20
34 38 42 46 50
B (T)

Developed first-wall helium cooling representations,
reduced-order models for divertor

WP B = 2 ROM

He cooling [W/m?]

He cooling [W/m?] 100

140 -
130 |rrT1] 80 Q
120 60
110 —»
100 40
90 ”
80 m
ax

’ Higher fidelity model
estimates heat
transfer coefficient

N
9
™
™
™

Poloidal
Orientation Toroidal
Orientation

" %OAK RIDGE

National Laboratory




FY25 engineering development highlights

Coupled CFD, neutronics for more accurate

Multi-fidelity benchmark of magnet coil casing stress trifium tracking, impact of materials properties

(analytic model, Elmer, Diablo, MFEM-FE)

2500 _ . . .
= - ot D'ab'O\ Displacemen enpg  Displacement CFD  <— neutfronics — tritium breeding
% (von Mises) 10 5f \ nz (2"8"‘) (temperature) ;jiﬁ;erence c}lue
1500 P ™ T (K) © Temperarure »
@ -0 N 1 ' . 0 950 3 Ep;,gg—k :
® 500 = onalyfic W, - M5 900 T E
34 38 42 46 50 ) R’ B oML
B (T) N 850 N 0 G Lo
800 -1 ~
2 s\' 2 o ";":ﬁ 2%
750 ‘%’*\ : "%r
Developed first-wall helium cooling representations, . 3| 4%
. 3 4 5 6 3 4 5 6 3 4 5 6
reduced-order models for divertor R (m) R (m) R (m)
fritium concentration
He coolin: [W/m il
He cooling [W/m] 00 % change with Soret effect MHD affects flow, thermal properties

=10T

Trit. conc.
- 20%

140 8

130

120 60

110 —»

100 40 — 1.0e+01
20

10%

Higher fidelity model
Poloidal estimates heat g B
Orientation Toroidal fransfer coefficient 0% 5
Orientation L 20%
-1.0e+01
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FREDA's approach: flexible component-based framework & data structure

Framework & Workflow

Capable of integrating swappable modules with diverse CPU/GPU requirements

System State File

|

Plasma

tate File

Geometry State File

Engineering State File

FASTRAN = EFIT  NUBEAM

TGLF DCON = TORAY

NCLASS GATO GENRAY

7 |

==]il ¥

C1,C2 First Wall Blanket
BOUT++ .
Divertor CS cail
SOLPS
PF coil TF coil

!

OpenMC

MCNP,SHIFT

tructur_a
Mechanics

DIABLO

Thermal

Hydraulics
openFOAM
openFOAM

!

CFD

— 1\

Elmer
openFOAM

/[ Driver

Driver

/

I

\
\
\

/ Driver

Fusion-Plasma
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Parametric Geometry

* Includes systems codes
and parameterized
geometry representation

\

Fusion-Engineering



Parametrized Geometry Handling with TRACER tool

Borowiec Fusion Eng. and Design, 200 114159 (2024)

TRACER - READ: Generate parametrization from existing CAD [0 Example transformations

)

 TRACER uses Cubit python API [T  automated meshing for multiphysics
« Enables geometry defeaturing, material homogenization, single component/slice

1 ; _ 2

— t

o %OAK RIDGE
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Parametrized Geometry Handling with TRACER tool

Borowiec Fusion Eng. and Design, 200 114159 (2024)

TRACER - READ: Generate parametrization from existing CAD

1

t
Lo

)

[1  Example transformations

TRACER uses Cubit python API 1  automated meshing for multiphysics
Enables geometry defeaturing, material homogenization, single component/slice

2

o *

OAK RIDGE

National Laboratory

PF Coil locations determined
by optimization with FreeGS

[Hassan, IEEE Trans. on Plasma Sci., (submitted)]

[1 Example first wall shape variations




Example Optimization: First Wall Protection Limiters

Optimization driver

Design space

A

Heat Flux
[W/m?]

3.4e+06
[ 3e+6
\ - 2.5e+6

— 2e+6
— 1.5e+6

l le+6
3.0e+05

Multiphysics analysis

First wall coohng

T[K]

2.2e+03
[ 2000
1800

— 1600
— 1400
— 1200
— 1000
— 800

ItbOO
3.3e+02

First wall v

Limiter
cooling \[*

Limiter

Plasma physics  Jli— = h

_ Breeding

Y Volumetric Heat
[W/m?]
1.2e+08

S5e+7

1 2e+/
le+7
5e+6
2e+6
le+b
500000
200000
100000

3.5e+04

Fl!!lrum 1T !!H!

A 4

First Wall Heat Flux

Figures of Merit

Maximum Temperature

TBR




FREDA's approach: flexible component-based framework & data structure

Framework & Workflow
Capable of integrating swappable modules with diverse CPU/GPU requirements

System State File

|

Plasma State File

Geometry State File

Engineering State File

FASTRAN EFIT  NUBEAM c1.C2
TGLF DCON = TORAY BOUT++
NCLASS GATO GENRAY SOLPS

EPED
!

Blanket
CS cail
TF coil

First Wall |
Divertor
PF coil

r

!

OpenMC

MCNP,SHIFT

tructuta
Mechanics

DIABLO

Thermal

CFD

]

Elmer

Hydraulics
openFOAM
openFOAM

openFOAM

\

7 |

Fusion-Plasma
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Example of large parameter space scan & optimization workflow

Generate Sample Points [«

Includes Dakota: Supports a range of ML techniques including
Log-linear regression, Gaussian Process, and Neural Network

Run IPS-FASTRAN/CESOL +
Engineering

Example of physics based reduced model fit of P; i,
(function of density, plasma current, H&CD power)
800

\ 4

Collect data sets

700 - Pfus (MW) .
!.s.
l 2600 A
« © woh
Generate ) o 5007 :
Reduced Model & 400 7
()]
= 300-
v L v =y
oy . 9 200-
Filtering Constrained 100
Design points Optimizer TGLE/SAT? 4 EPED
%0100 200 300 400 500 600 700 800
IPS-FASTRAN

o #(OAK RIDGE
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Framework now supports global sensitivity analysis & multi-fidelity UQ

New!
Generate Sample Points [+ Example GSA analysis  Multi-fidelity UQ strategically
Net electric launches high fidelity runs
ower
Run |PS-FASTRAN/CESOL + Injected beam particle energy(keV)p- E 50
Englneerlng Injected heating power (MW)- §
= 401
l Peak electron density (10420 mA-3)- ’5- w
= *
Collect data sets > Pedestal Greenwald fraction ﬁ 30+
£ SOLPs
Safety factor at 95% flux surface - S hiah fidelit *
l . B . = (hig Y) * (need to check
Generate Toroidal magnetic field on-axis (T)- % ” CoDvergence)
Reduced Model Triangularity (dimensionless) E 101 . e
] g I
s 3 . .2 . 3w
Elongation (dimensionless) . a . | | | | '
v ) 4 A 4 . . . 0 10 20 30 40 50
FiITering Consh.oined Aspect ratio (dimensionless)- - Injection power (MW)
Design points Optimizer Major radius (m)- . @ HF_INTERFACE % LF_INTERFACE
0.05 0.20  0.40
Sensitivit
y

Use MFUQ to reduce variance, or can apply

linear correction to lower fidelity model...

¥.OAK RIDGE
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FREDA is supporting a number of efforts

. : : : We practice on this example case:
Delivered FY25 DOE/FES Theory & Simulation Compact Advanced Tokamak with a DCLL-type blanket
Performance Target report (next slides) \

. Private efforts are using FREDA-IPS T Q e
ensemble scans, parametric divertor fool S e o) =
\ ¢ oll OUptimization
(Tokamak Energy, KDEMO, Type One, Theq) I ; .
p
« FREDA-FERMI for ArpO_E prOJeCT Tritium Breeding, Transport D;Zg:;:y?%fiiff r’d HEEE
on nested pebble bed blanket demhwipe
« Newly funded proposals I.I'* ~ wik

First Wall
Temperature

(FIRE, tokamak research, LDRD)

Plasma Heat Flux ~ Neutron Load  Helium Cooling

« Smolentsev SCIDAC shares CAT equilibria,

divertor structure, and first wall geometry.

N )

e Rapid surrogate model generation for
Al/ML pulse simulator (De Pascuale)

« Students: grad (H. Wilson), SULI (A. Irvin),
even high school

#(OAK RIDGE

National Laboratory




Compact Advanced Tokamak Reactor: Plasma Feasibility

P..=200 MWe Plasma Solution
using CESOL

Parametric Geometry 30

I
Separatrix |
25 |

20 -

]

1

I

15 4 '

I

/ I

10 '
EPED

54 n, (10%/m?) !
SOLPS-ITER !

®u4 a6 48 50 52 54

R (m)
Integration matters: CESOL predicted
separatrix density is higher than the EPED
assumption of 1/4 ne 4

1 CESOL predicts improved performance

s %OAK RIDGE
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Compact Advanced Tokamak Reactor: Plasma Feasibility

We couldn’t find fully detached
divertor with initial geometry;
need automation for checking
SOLPS/BOUT++ convergence Parametric Geometry »
and geometry iteration a

P..=200 MWe Plasma Solution
using CESOL

I
Separatrix |

20 -

Divertor Design .5

A

r geometry + grid +
< detachment recipe EPED
" ] 19/m3 \
Asymmetric > ne(10%m) SOLPS-ITEH/"E
detachment 04 : : . —
4.4 4.6 4.8 5.0 5.2 5.4
®
Heat Flux Integration matters: CESOL predicted
(Wim?) : separatrix density is higher than the EPED
-»9.0606«*05 P .
& assumption of 1/4 ne 4
— 6.7956+05 . . e
1 CESOL predicts improved performance
-—4.530e+06
— 2.265e+05
ey L Thermal-stress on RAFM steel

Min: 0.000 5.00e+08* >1700 MPa, well above the
expected yield stress
1210407+ of 400-600 MPa
”

o #(OAK RIDGE
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Magnet Feasibility

Magnet cooling representation & analysis Magnet stress analysis
Vo o Plasma Solution
|} “a N var: fotal heating_w/m3 30 :

—75.01

1 b Parametric Geometry

— 25.03

PF Coil Optimization

EFED

54 n, (10"m7) -
SOLPSATER 0 D

6 g
E JB .._\
R il '\\
§ \
ints
aratrix
ints )|
il

0.03993
Max: 8.117e+04
N—— Min: 0.03993

neutron heat
deposition on
magnet case

46 48 50 52 54

Divertor Design f:/ £

geometry + grid + " S
detachment recipe { R

Heat extraction ~200 W per coil.
Insulation is key; if thermal efficiency
of the insulator surrounding the
magnet coils was reduced from 99% A
to 90%, temperature increased >200 K 25 & 4 B

Major radius [m]

*  Will PF coils create the shape for the whole discharge
within stress, current limitse v

Do TF coils experience too much stress, displacemente
14 mm vertical displacement

displacement Magnitude

" %OAK RIDGE
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PFC heat handling feasibility

First wall is too hot

mm Flasma flux S0MW
E Plasma flux 100MW
PFC temperqture CheCk =0 = Uniform flux 0.2 MW/m™2
Plosmo predlc'l'S. E 2250 mmm Uniform flux 0.5 MW/m~2
1-20 kW/m?2 first wall Parametric Geometry v 200
15 MW/m2 divertor 2 175
©
Engineering calculates: E’_Enu | B us2a6 146765 143748 137964
760K first wall E 5o
...3000K divertor 1000
750
1 Change the plasma? 05 10 20
1 Engineer better heat He mass flux [kg/s]
transfere scanned He flow rate
First Wall
Plasma Heat Flux Neutfron Load Helium Cooling Temperature

— 1.0e+06 — 6.0e+06

— 300403
Se+b

mi \
80
de+b I | n
=] ‘ 0
Jo4b
20
ers ma
X 20
100406
— 0.0e+00

— 2500

1500

Heat depo [W/m?3]
He cooling [W/m?3]

1000

,q
heat flux (W/m2)

g
8

6.0e+02

o %OAK RIDGE
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FY26 FREDA goal: iteration to find a steady-state AT reactor solution

f’ CESOL Plasma Solution
Magnet Temperature } z —

" Parametric Geometry ; PF Coil Optimization
. ] EPED .
s 54 n, (10%m® - L "‘
: " L SDLPS-HEH'A? s o] -
4.4 4.5 4.8 50 52 G4 ] B -
/ X R (m) f’ 2 -
3.1e+00 7 . 2 MV e -

. . Divertor Design ./
Trifium Breeding, Transport geometry + grid +

detachment recipe

= N
r )
25 3 3.5 4 4.5

Plasma Heat Flux ~ Neutron Load  Helium Cooling Teﬂge%qrgre
- 5e+b ig m < ;:S'O?; 2;00
|m + FZ P+ ™ |w — -
= 2046 E m A g -
L 106403 1.0e+06 m 2 g 0e+02
o XOAKRIDGE utilize plasma loading for thermal analysis




Summary: Fusion Reactor Design and Assessment (FREDA) SCIDAC connects
plasma+engineering modeling for self-consistent, multi-fidelity, iterative optimization

ORNL/TM-2024/3520

o Inifial focus: connecting plasma fo PFCs ¥25 Theory and Simulation
for eﬂgiﬂeerlﬂg CIHCHYSIS Performance Target:

Development of an integrated
modeling framework for fusion

° FY25 TSPT repori- qvqilqble rea.ctor.design and assessment

tional Laboratory:
dalassi, J.W. Bae, K. Borowiec, Y. Ghai, E. Hassan,
J. Lore, J.M. Park, A. Sircar, P.B. Snyder, G. Staebler

- Itis a magjor challenge to find suitable balance
between the plasma solutfion, wall and sona
divertor loads, neutron heating, and practical
limits of PFC cooling.

 FREDA future development directions

— Incorporation of materials models
(SLAG, cracking)
— Transient plasma+engineering Full report

- Provenance fracking herer

o8 #(OAK RIDGE
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