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Establish a traditional optimization method in our community
Introduce necessary divertor optimization metrics

Offer toolchain and benchmark
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Probability density

60 — Traditional optimization method based on statistical analysis/ ®

Wendelstein

Plasma physics and nuclear fusion is full of stochastic processes!
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Probability density

60 — Traditional optimization method based on statistical analysis/ ®

Maxwellian Probability Density Function (PDF)
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Wendelstein

Accuracy
» Relation of most probable outcome on target
Precision

« Scatter within or around Lower Specification Limit (L.S1.)
& Upper Specifiation Limit (USL)

* How close are outomes together

DPMO Yield %
(defects per million opportunities)

0 | >691462

3 66 807
4 6 210

93.3 %
99.38 %




Probability density

Wendelstein

60 — Often only an upper or lower limit — Example: Sputtering Y

Integrated Maxwellian PDF Upper Specification Limit — USL
S Sputtering Thrershold E;, [eV]
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o-level DPMO Yield %

(defects per million opportunities)

0 | >691462

3 66 807 93.3 %
4 6 210 99.38 %
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Wendelstein

60 — Three possible solution strategies X
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60 — DMAIC design cycle to optimize W7-X divertor X

Define

/

Measure

=

Efficient process »

Control
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Wendelstein

» Quality or performance steps one standard deviation apart
» Ensures efficient step size
» Too small of step has fixed overhead without gain

» Too large step might stretch system and bring
overwhelming complexity to meet excessive requirements

» Enables precise definition of boundaries in distributions

o-level DPMO Yield %

(defects per million opportunities)

0 | >691462

3 66 807 93.3 %
4 6 210 99.38 %




Probability density

60 — Often only an upper or lower limit — Example: Sputtering Y

Integrated Maxwellian PDF
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Wendelstein

» Quality or performance steps one standard deviation apart
» Ensures efficient step size
» Too small of step has fixed overhead without gain

» Too large step might stretch system and bring
overwhelming complexity to meet excessive requirements

» Enables precise definition of boundaries in distributions
o-level DPMO Yield %

(defects per million opportunities)

0 | >691462

3 | 66807 93.3 %
6 210 99.38 %




Probability density

60 — Often only an upper or lower limit — Example: Sputtering Y

Integrated Maxwellian PDF
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Wendelstein

» Quality or performance steps one standard deviation apart
» Ensures efficient step size
» Too small of step has fixed overhead without gain

» Too large step might stretch system and bring
overwhelming complexity to meet excessive requirements

» Enables precise definition of boundaries in distributions
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Probability density

60 — Often only an upper or lower limit — Example: Sputtering Y

Integrated Maxwellian PDF
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Wendelstein

» Quality or performance steps one standard deviation apart
» Ensures efficient step size
» Too small of step has fixed overhead without gain

» Too large step might stretch system and bring
overwhelming complexity to meet excessive requirements

» Enables precise definition of boundaries in distributions
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Probability density

60 — Often only an upper or lower limit — Example: Sputtering Y

Integrated Maxwellian PDF
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Wendelstein

» Quality or performance steps one standard deviation apart
» Ensures efficient step size
» Too small of step has fixed overhead without gain

» Too large step might stretch system and bring
overwhelming complexity to meet excessive requirements

» Enables precise definition of boundaries in distributions
o-level DPMO Yield %

(defects per million opportunities)

0 | >691462

3 66 807 93.3 %
4 6 210 99.38 %




Wendelstein

Kano model to categorize requirements X

Attractive

Satisfaction

Performance

Fullfillment of requirement
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Wendelstein

Understanding Divertor Requirements with the Kano Model Y

Mandatory (absolute)
« Survive heat
« Survive sputtering
« Survive forces
« Survive neutrons
* Survive ...
Performance (relative)
« Particle exhaust

« Particle retention
Attractive

. High recycling regime

. Power radiation

*  Volume recombination

*  Tritium Core Recycling
Indifferent

e ?
Reverse

. Impurity release
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Wendelstein
7-X

Divertor Reactor performance requirements — He/H exhaust & rete

A i_d4

rHe,exh = rq,’l rH,exh = rp,1
* Function 1: Exhaust 1y Function 2: Retention 1

« Exhausted particles do not have to be retained
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Divertor Reactor performance requirements — He/H exhaust & rete@

° I_He,exh = I_a,1 I_H,exh = I_p,1

* Function 1: Ny

Function 2: 1n,..¢

« Exhausted particles do not have to be retained

Function 1:
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Function 2:
Nret = 1
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Wendelstein

A priori first principle divertor functions X

——-~

1. Divert plasma particles

2. Neutralize plasma particles

3. Collect neutral particles

4. Remove neutral particles

5. Contain particles in sub-divertor
6

7

8

9

1

Exhaust

i g

|
|
B L . Performange_
— - = (,: ——————
|
.Recycle neutrals in divertor | Retenton |
. Plug particles in divertor |
. Screen impurity particles from core ____-
Mandatory

. Survive — Heat, Sputtering, Forces,...
“““ Attractive

0.Cost/Time function tmmm e e DY

- s s
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A-priori first principle Design Metrics

Performance Function 1: Particle exhaust
r]exh = I_exh/ redge,out

= r]diversion nO nCOll r]removal
1.1 Particle diversion

Ngiversion = I_div,in/ redge,out

1.2 Particle neutralization

No = o/ Tgivin = Nosurf T Novol
No,surf = Fosurf/ Taivin

1.3 Particle collection

Neoll =Tean/ To

1.4 Particle removal

=lon /T

r]removal coll

Attractive requirements

Recycling

Radiation

<
fT,core
Volume Recombination

T-Core Recycling

Wendelstein

1.2 1.3

Define

2.3 2.2 \ j
10 —31%
50 —99.977%
Improve Analyze
60 — 99.99966 % ¢

20 — 69%
yield stress

Nsptr, reswt

Metric Fos = dmax _
Qaiv =1- Workmg stress



Control Models

Wendelstein

Target maker

« ~ Hours — by hand

« 5-30 min — parametric on field line tracer

« 300 ms — parametric on gordon

Baffle maker — in development

EMC3Lite

e 30s

COMSOL Mercury

* 2 h setup — newbie * 2 min setup

« 20 min setup — experienced Parallelisation:

*  15-30 min Nggyection * Now 15-45 min Ngjiection

* 4-5h Nrermoval * from 90 min Negjection

Further reduction through coarsening of grids

Plasma code

Neutral code

Performance result
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Wendelstein

Understanding the AC method for the molecular flow regime X

Raytracing (Computer Graphics) =———————————ep AC method

dL,
dL, dyss,
dy,5,
dL,
« Calculates probability densities instead of particle
dynamics

* | No discretisation of phase space
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Wendelstein

Solution with COMSOL Multiphysics e~

Solution with EMC3-Mercury

Location of neutralisation Neutral particle distribution
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Benchmark

Wendelstein

Standard 5/5 High-Mirror 5/5 High-lota 5/4 Low-lota 5/6

Particle diversion 99.86 %
X

Particle collection 2.94 %
X

Particle removal 2.99 %

Particle exhaust 0.084 %
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99.94 % 99.71 % 99.93%
3.32 % 3.83 % 1.01 %
3.45 % 2.84 % 3.14 %
0.113 % 0.108 % 0.032 %



Wendelstein

Experimental validation: Pressure at AEH port X

0.8 7
e High iota configuration

— 071 o Standard configuration | | 6
b e High mirror configuration
€ 0.61 e Low iota configuration |
nl'a * e} 5
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£ | =
S ’;g' 43

0.4 - | =
T ¥ x
= 1.
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2 0.3
o > 2
§ 0.2 1
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2014 e =i

0.0 : 3 O
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Wendelstein

Particle collection: Comparison to high-fidelity model X

(Wenzel et al.,

AC method EMC3-Eirene

NF 2024)

Particle collection

0 o/ _ 0 0 0
(Standard configuration) AL e 4.0% -10.4 % 0.69 % +0.28 %

Neutral fluxes in 3 MW simulation

Pumping gap: Iow-iotaJ
Pumping gap: high-iot

Neutral fluxes in 5 MW simulation

Pumping gap: low-iota - =
Pumping gap: high-iot il RS
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Radiated fraction (
Radiated fraction (%)

Flux (% of generated neutrals)
Flux (% of generated neutrals)

70.19 % 7'50.24 % 80.29 % 8'50.33 % g0.56 % 9.5 0.60 °Jo

Line integrated density (10'° m™?) 0.59 %

O
a0
(@]

40
0.24 % 105036 % o0.589%11 11.5

Line integrated density (1019 m'z)

[D. Boeyaert, PPCFET 2024]
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Wendelstein

Particle removal: Comparison to high-fidelity model X

AC method DIVGAS EMC3-Eirene

Divertor section Low-lota High-lota Low-lota High-lota Low-lota

Particle removal 2.99 % 2.84 % 19%-2.7% 30%-40% 4.75%-5.88%

100 g T g T T 100
90 E 90 ‘
a) [p=107 (s"7) b) ‘ =107 (s7) o—
80 I;,=102" s7) — % =107 () o
=107 (s) mmmmm ’ T,=1072(s") oo
70 70
~ 60 = 60
e =
g 5 £ 5
& &
= 40 ~ a0
30 30
20 20
10 10
0 0
OutfluxI DI D2 D3 HlI H2 H3 H4 HS C E F G Pump Outflux J Ju. o J2 )3 J4 )5 F E C Pump
Leakage Leakage

[S. Varoutis, NF 2024]
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Wendelstein

Parametric Divertor Chamber Maker F Y

Target — Separatrix angle
Field aligned, parametric design in Kisslinger format for

0° 45° 90°
 Target maker I\
« Pump opening maker N\E I &
- Baffle maker — under development \ \\ \\ | \\
1) ) 1) )

Low fidelity particle collection efficiency

1.7% 76.8% 64.1%
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60 — DMAIC design cycle to optimize W7-X divertor “1

= Quality or perfermance steps one standard deviation apart

= Ensures efficlent step size

Define + Too small of step has fixed averhead without gain
/’ \ # Too large step might siretch system and bring
overwhelming complexity to meet excessive requirements
Control Measure

# Enables precise definition of boundaries In distributions

o-level DPMO Yield %

kit b Bdaa spparEEL

> 691 462 <31 %

P

4 6210 99.38 %

Efficient process

Control Models =

Core and Edge field up to LCFS

Diverted field lines / islands

Divertor chamber

1 ‘\t
Plasma code @ , Low fidelity High ﬁdeli(y\ m
i % : cyle time cyle time H 4
e (0 N e’ B

Performance result 2t ) ' ‘ < AT
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Wendelstein

i

A-priori first principle Design Metrics
12

1.3
Performance Function 1: Particle exhaust '8 8 i : P
Ml = Cean { Tecge cnn
= RAawersion Ao Meail Meemoval Mreterion = Msus-con Moiv-re-inam Mpig Mlse

1.1 Particle diversion
Maversion = I awin ' Taage out
1.2 Particle neutralization

2.1 Pumplng plenum contalnment

Mperwmcon = 1 = (Mpenumacss £ Tean)

2.2, Divertor re-ionization

y = od Ui = Mg st + Mo
" S e o e L P A
1.3 Particle collection 2.3. Divertor plugging
,.I-“ = i T g =1 = {Faronss ¢ Favnd = Moo * Npigion
1(1 Particle r:rlrlo\zal 2.4, Particle screening
Mhemoa = e ! Ten Necr
Attractive requirements R

Recycing
Radiatian /
Fr eort|
Ireord
\ = .
Mstric _ dmar Tptrurerist _ il stvess =y
Walima Racombination Fiis = = e Fos = e

T-Core Recyclng

Solution with COMSOL Multiphysics

Solution with EMC3-Mercury

Location of neutralisation Neutral particle distribution
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