Contribution ID: 42 Type: Invited oral

Overview of the PSFC blanket and fuel cycle modelling activities

Tuesday 9 December 2025 14:00 (30 minutes)

Achieving reliable tritium self-sufficiency remains one of the defining challenges for fusion power-plant design, making accurate tritium fuel cycle modelling essential.

At the MIT Plasma Science and Fusion Center, we are developing a unified digital framework that connects material-scale physics, component-level behaviour, and system-level fuel-cycle performance, informed and validated by experimental platforms.

At the material scale, we combine thermo-desorption analysis (TDS), parametric optimisation for experimental validation (NRA, permeation experiments...), supported by the development of an open-source database of tritium transport properties (HTM).

We also investigate fuel cycle component performances by leveraging multi-physics workflows (OpenFOAM, OpenMC, FESTIM): tritium transport dynamics in the ARC breeding blanket, extraction efficiency of a PAV extractor, tritium contamination in a heat exchanger...

Finally, at the system level, we integrate these component models within a system modelling code (Path-Sim and it's graphical interface PathView) to analyse complete systems, from lab-scale experiments like LI-BRA/BABY to full power-plant concepts like ARC.

This multiscale, multiphysics modelling strategy highlights how digital engineering can accelerate design, improve predictive capability, and support the development of tritium-robust fusion reactors.

Country or International Organisation

United States of America

Affiliation

Plasma Science and Fusion Center, MIT

Speaker's email address

remidm@mit.edu

Author: DELAPORTE-MATHURIN, Remi (Plasma Science and Fusion Center, MIT)

Co-authors: DARK, James (Plasma Science and Fusion Center - MIT); DOKKEN, Jorgen (Simula Research Laboratory); Mrs DUNNELL, Kaelyn (Plasma Science and Fusion Center, MIT); KHURANA, Chirag (Plasma Science and Fusion Center - MIT); Mr MACDONALD, Ross (UKAEA); YANG, Huihua (Plasma Science and Fusion Center - MIT)

Presenter: DELAPORTE-MATHURIN, Remi (Plasma Science and Fusion Center, MIT)

Session Classification: Simulation and Modelling Techniques

Track Classification: Simulation and Modelling Techniques