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Make simulations do more 

way faster
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Outline
• Radiation transport challenges for fusion power plants

• Workflow developments (R2S and D1S) in OpenMC

• Integration with discontiguous UM support through XDG

• SPARC example analyses and performance comparisons

• Nuclear heating and SDR UQ + automated CAD-first benchmarking
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Why are there unique simulation 
challenges (and opportunities) 
for radiation transport in fusion 
power plant design?
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Geometry
Representation

Matters!
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Nuclear Responses
● Sub-mm to ~100m scales
● Instantaneous to decades
● Set requirements for other systems
● Geometric fidelity matters
● Not just neutrons! Photons, 

electrons, and ions matter too
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Nuclear Responses
● Sub-mm to ~100m scales
● Instantaneous to decades
● Set requirements for other systems
● Geometric fidelity matters
● Not just neutrons! Photons, 

electrons, and ions matter too

Uncertainty quantification (UQ) 
and sensitivity analysis (SA) must 

be seamlessly integrated into 
workhorse design tools
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Integrated UQ is critical to improving predictive modeling

Uncertainties come from many places: 
nuclear data, material and geometry 
specifications, method approximations.

Discrepancies between experiments 
and computational models naturally 
increases as the size and complexity of 
models increases.
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Example fusion neutronics analyses
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Example fusion neutronics analyses

To have confidence in our predictive 
modeling tools we have to find better 
agreement between experiments and 
simulations for large complex systems.
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Integrated UQ is critical to improving predictive modeling

Uncertainties come from many places: 
nuclear data, material and geometry 
specifications, method approximations.

Discrepancies between experiments 
and computational models naturally 
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Example fusion neutronics analyses

To have confidence in our predictive 
modeling tools we have to find better 
agreement between experiments and 
simulations for large complex systems.

We need powerful, extensible, integrated tools to make this tractable!
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We don’t have a good sense of what the REAL uncertainties are in these analyses

As it currently stands…

What are the engineering margins people need to work with?
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We also don’t have ways to easily find the biggest levers during design

We don’t have a good sense of what the REAL uncertainties are in these analyses

As it currently stands…

What are the engineering margins people need to work with?

How can we change the design to make it better?
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We also don’t have ways to easily find the biggest levers during design

We don’t have a good sense of what the REAL uncertainties are in these analyses

As it currently stands…

How can we facilitate and accelerate the “build, measure, learn” cycle when… 

1. It takes forever to “build” the analysis with existing tools.

2. What we “measure” may not be correct (limited uncertainties).

3. What we “learn” is mostly binary i.e. “will it work” or “won’t it work” with 

no additional feedback or margins.

What are the engineering margins people need to work with?

How can we change the design to make it better?
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What is the solution here?
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Transport integrated UQ/SA techniques to handle the 
wide variety of responses in fusion
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● Full control over all modules and interconnects
● Designed for exascale architectures
● Extensible for coupling with other applications
● Single source of truth for transparent V&V
● Open-source, community-driven ecosystem
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How do we actually 
conduct our UQ?
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Total Monte Carlo (TMC) and Perturbation Theory

Captures nonlinearities, but can be 
computationally expensive
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Can be done in a single 
simulation, but requires the 
adjoint flux, and transport 
operator perturbations
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Total Monte Carlo (TMC) and Perturbation Theory

Captures nonlinearities, but can be 
computationally expensive

Can be done in a single 
simulation, but requires the 
adjoint flux, and transport 
operator perturbations

These are questions of performance and infrastructure
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Streamlined OpenMC SDR infrastructure reduces errors and 
enable rigorous uncertainty quantification
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transport 
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solve
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Streamlined calculation provides opportunities for rigorous, 
systematic UQ and acceleration
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More physically correct than standard SDR workflows
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Validation of OpenMC workflows with the FNG shutdown 
dose rate benchmark from SINBAD

Frascati Neutron Generator (FNG) 

E. E. Peterson et al 2024 Nucl. Fusion 64 056011
https://doi.org/10.1088/1741-4326/ad32dd

Demonstrates/validates capabilities typically obtained 
by coupling MCNP and FISPACT in a single, free, open 
source package, with reduced approximations

https://doi.org/10.1088/1741-4326/ad32dd
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Validation of OpenMC workflows with the FNG shutdown 
dose rate benchmark from SINBAD

Frascati Neutron Generator (FNG) Figure by Paul Romano
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Do these workflows apply 
beyond benchmarks?

What impact could they have 
on design of future devices?



12/10/2025 29Ethan E. Peterson, peterson@psfc.mit.edu©  MIT Plasma Science and Fusion Center

Preliminary SPARC tokamak analysis in OpenMC

❖ Discontiguous UM 20° model
❖ 794,974 linear tets
❖ 413,632 triangles
❖ 268,529 nodes
❖ 1,811 volumes 
❖ 28 materials
❖ 37 nuclides

Enabled by new XDG library

https://github.com/xdg-org/xdg 

Work on SPARC calculations supported by 
Commonwealth Fusion Systems under 
RPP036: Nuclear Modeling

https://github.com/xdg-org/xdg
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What is XDG?

The Accelerated Discretized 
Geometry (XDG) library is an API for 
OpenMC to interface with different 
mesh libraries and leverage 
high-performance raytracing libraries 
for Monte Carlo operations.

P. Shriwise et al. SOFE 2025 poster
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Q: Why XDG? A: Performance and deployability
SPARC magnet heating within +/- 5% of MCNP at >20x speed

MCNP (96 CPU for 23 hours on AWS GovCloud)
OpenMC (my laptop for less time for free)

MCNP results by CFS
A. Johnson et a., Calculation of Magnet Heating Profiles Using 
Advanced Unstructured Mesh Variance Reduction Techniques,  15th 
ITER  fusion neutronics meeting, April 2024.
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Nuclear heating is just the first example, shutdown 
dose rates are available as well

P. K. Romano, B. Ebiwonjumi, P. C. Shriwise, and E. E. Peterson. Implementation of the D1S Methodology for 
Shutdown Dose Rate Calculations in the OpenMC Monte Carlo Particle Transport Code. FST (accepted 2025)

Direct 1-step (D1S) workflow 
enabled in OpenMC

Transport decay photons 
instead of prompt in a single 
simulation

Must satisfy approximations of 
no burnup and dose rates 
dominated by single step 
pathways

4 additional lines of Python from an 
existing OpenMC model
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D1S provides dose rates for arbitrary irradiation 
scenarios from a single simulation

Time 1

Time 2

Workflows are up and 
running on realistic SPARC 
models 

Shutdown dose rates with 
D1S in OpenMC computed 
on the right for multiple 
time cooling times after a 
single SPARC pulse (PRD) 
from one OpenMC 
simulation
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Where does our UQ fit in?
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Nuclear heating uncertainties even in simple benchmarks 
have real implications for power plants
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Uncertainty of photon heating due to neutron cross-sections

Nuclear heating uncertainties even in simple benchmarks 
have real implications for power plants
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Uncertainty of photon heating due to neutron cross-sections

Nuclear heating uncertainties even in simple benchmarks 
have real implications for power plants
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More integral benchmark 
experiments for fusion are 
desperately needed!
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Shutdown dose rate uncertainties 
Propagation of neutron cross-section uncertainties in ITER 
port plug computational shutdown dose rate benchmark
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Shutdown dose rate uncertainties 

TD1

Propagation of neutron cross-section uncertainties in ITER 
port plug computational shutdown dose rate benchmark
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Moving towards UM transport & methods V&V

• Focus on benchmark definition in neutral 
format with CAD for geometry

• Automate CAD-to-mesh and CAD-to-CSG 
workflows for validation

• Exercise on existing benchmarks

• Extend to include analytic and 
computational benchmarks including 
transmutation coupled responses and new 
experiments

• Automate test suite to run on OpenMC 
release

• See poster by Stefano Segantin for more 
info
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What impact can this have for the fusion community?

● Unified open source nuclear analysis ecosystem includes all necessary 
infrastructure to support design and providing a consistent interface for designers
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design loop (much more to come with profiling efforts and GPUs…)
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What impact can this have for the fusion community?

● Unified open source nuclear analysis ecosystem includes all necessary 
infrastructure to support design and providing a consistent interface for designers

● Performance enhancements save time and enable UQ/SA decision making in the 
design loop (much more to come with profiling efforts and GPUs…)

● Permissive license opens options for compute platform from laptops to exascale 
machines without export control restrictions saving time and cost

● Fastest way to onboard new talent and train them to make impact in both the 
public R&D space or the private sector
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Conclusions

• Comprehensive UQ for fusion power plant design starts with addressing 
the necessary workflows and analysis pathways.

• Transport-integrated UQ is enabled by both infrastructure improvements 
as well as performance improvements for both TMC and perturbation 
theory based methods.

• OpenMC is rapidly nearing “feature completeness” for fusion technology 
development and has a compelling performance narrative thanks to XDG.

• UQ pipelines are critical to making good engineering decisions

• Scalability and deployability are a huge benefit - runs on laptops to 
exascale and everything in between

Thank you!


