I I I l l Plasma Science & Fusion Center

FESTIM

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Validation of FESTIM Hydrogen Transport
Modeling in FLiBe Through HYPERION
Permeation Data

Huihua Yang, James Dark, Abhishek Saraswat, Weiyue Zhou, Kevin Woller,
Eathan Peterson, Remi Delaporte-Mathurin

Plasma Science and Fusion Center, MIT, USA

Email: huihuay@mit.edu
IAEA Workshop on Digital Engineering for Fusion Energy Research
12/11/2025



Background & Motivation

>

>

) FINITE ELEMENT SIMULATION OF TRITIUM IN MATERIALS

FLiBe is a leading molten salt candidate for liquid blankets (MIT LIBRA
Project > ARC) {E+13

Tritium control in liquid blankets ot
<
design requires accurate hydrogen = ie+12
transport models and transport data §; \
o ] . §1E+11
Existing FLiBe permeability data are £
scarce & inconsistent >
1E+10
o 1 1.1 1.2 1.3
Traditional 1D model negIECt 1000/T (1/K)
|ea kage paths % permea bility errOrS e==sNakamura H2 (2015) Calderoni_T (2008) Nishiumi_H2 (2016) Anderl_D2 (2004)
up to order(s) of magnitude biased permeability leads to incorrect

tritium inventory predictions
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Background & Motivation

Goal:
Apply FESTIM to interpret MIT’s HYPERION (hydrogen permeation) experiments,

accounting for 2D hydrogen transport and realistic leakage boundary conditions,
to extract FLiBe permeability for liquid blanket design

.

" First integrated simulation-experiment framework for molten-salt
permeation, enabling geometry-resolved permeability extraction

" First direct assessment of sidewall leakage effects in molten-salt permeation
experiment

= Demonstration that 1D models bias permeability estimations

= A consistent workflow to derive Arrhenius-form H-isotope permeability across

different materials
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HYdrogen PERmeatION (HYPERION) Experiment !

" |mpose partial pressure of H2 upstream
" H permeates through the Ni membrane and FLiBe

downstream S
. liguid + Ni vessel
= "= Measure the desorption flux of H downstream
" Repeat at different temperatures
®1E+16
§8E+15 M"“'O‘M.o..
e 0% CeP00
£ 6E+15 o
» o E 4E+15 Oy
® o S o®
upstream - 2EHIS | g
< ..
= 0
glovebox 0 0.5 1 1.5 2 2.5 3
Time (h)

Quasi-2D geometry - sidewall becomes an important flux path

| § ]
I Ill l Plasma Science & Fusion Center



FESTIM (Finite-Element Simulation of Tritium in Materials)

» Multi-dimension, multi-species (H isotopes) transport
FESTIM

= Diffusion

= Trapping and de-trapping
=  Decay

= |sotope exchange

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

» Multi-region chemical potential continuities
= Metal-liguid, metal-metal interfaces

> Heat transfer

> Advection [=] ;v [m]
> Open-source | )

)FESTlM https://github.com/festim-dev
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2D FESTIM model for HYPERION experiment i

»> 2D

> H diffusion

» Potential continuity
interface

» | Sidewall leakage: boundary conditions

» Outputs: spatial hydrogen concentration
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» Flux extraction: ] = —DVc

Time: 0.00 h
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Boundary conditions

Two extreme cases
» ldeal coating - sealed vessel - no H leakage to

glovebox
= Basic assumption used in traditional 1D interpretation

» No coating = full leakage = H free release to the
glovebox

= Real experiment (partial coating) lies between these
limits

glovebox

) FINITE ELEMENT SIMULATION OF TRITIUM IN MATERIALS
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FESTIM-Hyperion Workflow

Temperature - Compute salt thickness - Setup BC - Guess permeability - Run 2D FESTIM -
Compared to experiment - Bisection update

. _ Find effective fitted permeability
L th temperature points that make simulation flux
consistent with experimental

Thickness of FLiBe one

Boundary condition

Yes Bisection algorithm

k th guess of
permeability

FESTIM 2D simulation

Simulated permeation Hyperion
flux measurement flux

No, k=k+1

FESTIM G
l l Plasma Science & Fusion Center

....................................



SE+15
4.5E+15
4F+15

“ 3.56+15
= i
g 3E+15
=
g 2.5E+15
:g 2E+15 a
£ 1.5E+15 '
1E+15 .
S5E+14
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FESTIM 2D flux = Hyperion measurement with errors
~ 1.2E+11
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FESTIM mideal coating ®no coating

i Permeability properties can be expressed as i

Arrhenius format:

Ep
P=Pyexp| ———
kgT
Ep
InP=InPy ———
kgT
700 Weighted linear fitting, w; = , with
UlnP
InP; relevant measurement uncertainty
il ~1E+12
S 1+ = =
£ u O " u
‘ = 1E+10 = L s
¥ £
=
g 1E+09
200 > 1 1.1 1.2 1.3
= 1000/T (1/K)

m ideal coating ™ no coating
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Fitting permeability

1E+12
é R .érrhenius fit-no coating
—.E —
e ﬂrhenius fit-ideal coating I N
: e | e ¥
% 1E+10 \ P —3
& Permeability inferred from 2D FESTIM

using different boundary conditions
1E+09
1 1.05 1.1 1.15 1.2 1.25 1.3

1000/T (1/K)

0.401

FLiBe permeability lies between 3.17 x 1012 exp (—

0.675
) ~3.16 x 10 exp (— )

kpT kpT
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Fitting performance

5.00E+15

4.50E+15
« 4.00E+15
%3.50E+15

’
Z 3.00E+15
= 2.50E+15
F 2.00E+15
§ 1.50E+15
%~ 1.00E+15
0.00E+00
500 550 600 650 700

T(C)

B FESTIM ideal coating B FESTIM no coating ® Experimental measurement

= Simulation match experiment
» Different inferred permeability, similar fluxes, ONLY due to boundary condition choice

) FINITE ELEMENT SIMULATION OF TRITIUM IN MATERIALS
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Fitting permeability

1E+13
% 1E+12
«
==
E
z1E+11 B
= Arrhenius fit t —_

rrhenius fit-no coatin

% — 0 ° —
é Arrhenius fit-ideal coating [ — —2
S 1E+10 —8

1E+09

1 1.05 1.1 1.15 1.2 1.25 1.3

1000/T (1/K)

FLiBe permeability lies between 3.17 x 1014 exp (— 0'401) ~3.16 x 10 exp (— 0'675)

kpT kpT
FESTIM
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. . . . . Glovebox| .,
Hydrogen permeation behavior investigation
1.20E+15 downstream
1.00E+15 500C sidewall
5 8.00E+14
%6.00E+14
= 4.00E+14
2.00E+14 I upstream
0.00E+00 - sidewall
experimental downstream upstream flux upstream downstream liquid surface membrane
measurement flux sidewall sidewall surface
500-700C
Case Upstream sidewall share Downstream sidewall share
Relative to upstream flux Relative to downstream flux
ldeal coating 15% - 21% 35% - 53%
No coating ~94% 13% - 61%

Sidewall transport contribution increases with temperature

) Geometric effects are non-negligible, should be modeled explicitly
FESTIM Uy
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1D vs 2D simulation result comparisons b
SE+15

4.5E+15
4E+15

3.5E+15

(IS
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+
[y
)

2.5E+15

2E+15
1.5E+15
1E+15
S5E+14 . I I I
0
500 550 600 650 700

T(C)

Flux (H/s)

B FESTIM 1D ®FESTIM 2D ®experiment

= 1D models underestimate flux (~ 50% at 700C) - forces all H permeate through the
shortest path and ignores real leakage geometry

= Extracted permeability from 1D is artificially high, especially at high temperature
YFesTIM
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Fitting permeability

1E+13
% 1E+12
«
==
E
z1E+11 B
= Arrhenius fit t —_

rrhenius fit-no coatin

% — 0 ° —
é Arrhenius fit-ideal coating [ — —2
S 1E+10 —8

1E+09

1 1.05 1.1 1.15 1.2 1.25 1.3

1000/T (1/K)

FLiBe permeability lies between 3.17 x 1014 exp (— 0'401) ~3.16 x 10 exp (— 0'675)

kpT kpT
FESTIM
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Conclusions & Takeaways

» Geometry strongly biases inferred FLiBe permeability
= Neglecting sidewall leakage in 1D models leads to systematic overestimation of
permeability, with the error growing at high temperature

» First 2D, coating-condition-aware interpretation of molten-salt permeation
experiment using FESTIM
0.401

kpT

3.17 x 1012 exp (—

0.675
) ~3.16 x 10 exp (— )

kgT
» Direct impact on tritium inventory & safety margins

» A transferable digital-twin framework for permeation analysis
= Applicable across molten salts, structural metals, and permeation test configurations

) FINITE ELEMENT SIMULATION OF TRITIUM IN MATERIALS
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Future direction

> Interfacial bubble formation has been observed at the metal-FLiBe
interface, modifying the effective hydrogen permeability

» This introduces a three-phase coupled transport problem: solid-liquid-gas

» Next step: develop and integrate a bubble nucleation, growth, and
retention model into FESTIM

» Swap configuration experimental data will be used to quantify and
interpret the bubble-induced transport effects
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50—~ |- Key parameters
B.44— |- = Nimembrane: 0.002 m

= FLiBe thickness:
S 08~ Salt layer thickness m
M —— Thickness @ 500C 0.005139858
Thickness @ 550C 0.005194021
e Thickness @ 600C 0.005249337
| i (;8 } Thickness @ 650C 0.005305845
' ‘7‘9 Thickness @ 700C 0.005363582
gzﬁ_ ot v | = Repeat the measurement, each temperature
repeat twice
= T=500-700C

Experimental condition

" Normal: P_upstream ~ 1e5 Pa, P_down: 5-20Pa
)FESTIM Unit: inches I“il- Plasma Science & Fusion Center
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dc
— =V (DV
™ (DVc)
2
Cni _ CFLiBe
K ni Ky FLie
] =—DVc
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Uncertainty

= Mesh uncertainty almost negligible, mesh independence study has done

APPMg

= Relative system error from gas chromatograph (GC): u, = ———— 1.00011%
GC

* Measurement error u,:
* N steady state measurementdatay;,i =1..N
* Average:y

Z?Ll(yi_)_])z
N-1

e Standard deviation:std=J

std

* Standard uncertainty of the mean: u,. = Wi

» Combined standard uncertainty u, = +/ (usy)? + u?

" Expanded uncertainty at 95% confidence: U = 2 u,

) FINITE ELEMENT SIMULATION OF TRITIUM IN MATERIALS I I I I
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Fitting of permeability: swap configuration liquid side as upstream

1E+13
~
N
17}
= 1E+12 =
3] = - -
== -~ - o
e ™ -
1 = -
E - _
=~ 1E+11 — . =~ _
= [ | =L — i n
= o=
< ===
?)
£ 1E+10
P
P
==

1E+09

1 1.05 1.1 1.15 1.2 1.25
1000/T (1/K)
B artificial permeability no coating exp 1 e fitting permeability no coating 1 B artificial permeability ideal coating_exp 1
fitting permeability _ideal coating_1 e» o Nakamura H2 (2015) Calderoni_T (2008)
Nishiumi_H2 (2016) Anderl_D2 (2004)

» 0.162 - 0.235
438 X 10 " exp| — ~1.67 X 10 “exp| —
Y FesTIM kpT ksT ) I
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Fitting of permeability

1E+13
1E+12 - -

1E+11

24

1E+10

Permeability (m-1 Pa-1s-1)

1E+09
1 1.05

e fitting permeability_no coating_normal

1.1

1.15
1000/T (1/K)

e fitting permeability_no coating_swap

e fitting permeability_perfect coating normal == e Nakamura_ H2 (2015)

Nishiumi_H2 (2016)

) FINITE ELEMENT SIMULATION OF TRITIUM IN MATERIALS

Anderl_D2 (2004)

1.2 1.25 1.3

e fitting permeability_perfect coating_swap
Calderoni_T (2008)
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FLiBe details

LiF-BeF, molten salt (typically 66—34 mol%)
Originally developed at ORNL (MSRE)

» Excellent Neutron Performance
= Lithium enables efficient tritium breeding
= Beryllium acts as a neutron multiplier
= Supports compact, high-performance blanket designs

» High Thermal Stability
= QOperating range: ~500-900 C
= Low vapor pressure - compatible with near-vacuum systems
= Excellent heat transfer capabilities

» Chemical & Radiological Stability
= Low swelling under irradiation
= No violent boiling under off-normal conditions
= Chemically stable fluoride system

» Liquid Blanket = Self-Healing & Reconfigurable
= No radiation damage accumulation like solid blankets
= Salt can be purified, reprocessed, and reused online

) FINITE ELEMENT SIMULATION OF TRITIUM IN MATERIALS
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Property

Tritium breeding
Neutron multiplier
Phase

Operating temp.

Vapor pressure

Electrical conductivity

Chemical safety
Radiation damage
Tritium leakage risk

Data availability

FLiBe (LiF-BeF,)
v
v

Molten salt
~500-900 C

Very low

Low (good for MHD)

Stable fluorides
Self-healing (liquid)
Moderate—High

Sparse & inconsistent

FLiNaK (LiF-NaF-KF)
v
X
Molten salt
~450-900 C

Very low

Low

Stable fluorides
Self-healing
Low—Moderate

Moderate

PbLi (Liquid Metal)
v
v
Liquid metal
~500-800 C

Very low

High (severe MHD issues)

Reactive with air/water
Self-healing
High

Extensive

) FINITE ELEMENT SIMULATION OF TRITIUM IN MATERIALS
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