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Background & Motivation

➢ FLiBe is a leading molten salt candidate for liquid blankets (MIT LIBRA 
Project → ARC) 
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➢ Tritium control in liquid blankets 
design requires accurate hydrogen 
transport models and transport data

➢ Existing FLiBe permeability data are 
scarce & inconsistent

➢ Traditional 1D model neglect 
leakage paths → permeability errors 
up to order(s) of magnitude biased permeability leads to incorrect 

tritium inventory predictions



Background & Motivation

Goal:
Apply FESTIM to interpret MIT’s HYPERION (hydrogen permeation) experiments, 
accounting for 2D hydrogen transport and realistic leakage boundary conditions, 
to extract FLiBe permeability for liquid blanket design
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▪ First integrated simulation-experiment framework for molten-salt 
permeation, enabling geometry-resolved permeability extraction

▪ First direct assessment of sidewall leakage effects in molten-salt permeation 
experiment

▪ Demonstration that 1D models bias permeability estimations
▪ A consistent workflow to derive Arrhenius-form H-isotope permeability across 

different materials 
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HYdrogen PERmeatION (HYPERION) Experiment

▪ Impose partial pressure of H2 upstream
▪ H permeates through the Ni membrane and FLiBe 

liquid
▪ Measure the desorption flux of H downstream
▪ Repeat at different temperatures
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glovebox

Quasi-2D geometry → sidewall becomes an important flux path

upstream

downstream
+ Ni vessel



FESTIM (Finite-Element Simulation of Tritium in Materials) 5

➢ Multi-dimension, multi-species (H isotopes) transport 
▪ Diffusion
▪ Trapping and de-trapping
▪ Decay
▪ Isotope exchange

➢ Multi-region chemical potential continuities
▪ Metal-liquid, metal-metal interfaces

➢ Heat transfer

➢ Advection 

➢ Open-source

https://github.com/festim-dev



62D FESTIM model for HYPERION experiment

FLiBe molten salt

➢ 2D axisymmetric 

➢ H diffusion in Ni membrane + molten FLiBe + Ni 
vessel

➢ Potential continuity across the metal-liquid 
interface

➢ Sidewall leakage: boundary conditions

➢ Outputs: spatial hydrogen concentration

➢ Flux extraction: 𝐽 = −𝐷∇𝑐

Ni membrane
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Two extreme cases
➢ Ideal coating → sealed vessel → no H leakage to 

glovebox
▪ Basic assumption used in traditional 1D interpretation 

➢ No coating → full leakage → H free release to the 
glovebox

Boundary conditions

▪ Real experiment (partial coating) lies between these 
limits

glovebox



FESTIM-Hyperion Workflow
Temperature → Compute salt thickness → Setup BC → Guess permeability → Run 2D FESTIM → 
Compared to experiment → Bisection update

𝑖 th temperature points 

Thickness of FLiBe

FESTIM 2D simulation
k th guess of 
permeability 

Simulated permeation 
flux

Hyperion 
measurement flux

Match?

No, k = k+1

Yes Bisection algorithm

Boundary condition 
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Find effective fitted permeability 
that make simulation flux 
consistent with experimental 
one



Permeability properties can be expressed as 
Arrhenius format:

𝑃 = 𝑃0 exp −
𝐸𝑃
𝑘𝐵𝑇

ln 𝑃 = ln𝑃0 −
𝐸𝑃
𝑘𝐵𝑇

Weighted linear fitting, 𝑤𝑖 =
1

𝜎ln𝑃𝑖
2 , with 

ln𝑃𝑖 relevant measurement uncertainty  
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Fitting permeability

1E+09

1E+10

1E+11

1E+12

1 1.05 1.1 1.15 1.2 1.25 1.3

P
e
rm

ea
b

il
it

y
 (

m
-1

 P
a

-1
s-1

)

1000/T (1/K)

FLiBe permeability lies between 3.17 × 1012 exp −
0.401

𝑘𝐵𝑇
~3.16 × 1014 exp −

0.675

𝑘𝐵𝑇
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Permeability inferred from 2D FESTIM 
using different boundary conditions

Arrhenius fit-ideal coating

Arrhenius fit-no coating



Fitting performance
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FESTIM_ideal coating FESTIM_no coating Experimental measurement
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▪ Simulation match experiment 
▪ Different inferred permeability, similar fluxes, ONLY due to boundary condition choice 



Fitting permeability
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Calderoni (2008)
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Hydrogen permeation behavior investigation
downstream 
sidewall

upstream 
sidewall

Glovebox 13

Geometric effects are non-negligible, should be modeled explicitly

Case Upstream sidewall share
Relative to upstream flux

Downstream sidewall share
Relative to downstream flux

Ideal coating 15% - 21% 35% - 53%

No coating ~94% 13% - 61%

500C

500-700C

Sidewall transport contribution increases with temperature



1D vs 2D simulation result comparisons
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▪ 1D models underestimate flux (~ 50% at 700C) → forces all H permeate through the 
shortest path and ignores real leakage geometry

▪ Extracted permeability from 1D is artificially high, especially at high temperature
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Fitting permeability
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Conclusions & Takeaways
➢ Geometry strongly biases inferred FLiBe permeability

▪ Neglecting sidewall leakage in 1D models leads to systematic overestimation of 
permeability, with the error growing at high temperature

➢ First 2D, coating-condition-aware interpretation of molten-salt permeation 
experiment using FESTIM

3.17 × 1012 exp −
0.401

𝑘𝐵𝑇
~3.16 × 1014 exp −

0.675

𝑘𝐵𝑇

➢ Direct impact on tritium inventory & safety margins

➢ A transferable digital-twin framework for permeation analysis 
▪ Applicable across molten salts, structural metals, and permeation test configurations
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17Future direction

➢ Interfacial bubble formation has been observed at the metal-FLiBe 
interface, modifying the effective hydrogen permeability

➢ This introduces a three-phase coupled transport problem: solid-liquid-gas

➢ Next step: develop and integrate a bubble nucleation, growth, and 
retention model into FESTIM

➢ Swap configuration experimental data will be used to quantify and 
interpret the bubble-induced transport effects
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Unit: inches

Key parameters
▪ Ni membrane: 0.002 m
▪ FLiBe thickness: 

▪ Repeat the measurement, each temperature 
repeat twice

▪ T=500-700C

Salt layer thickness m
Thickness @ 500C 0.005139858
Thickness @ 550C 0.005194021
Thickness @ 600C 0.005249337
Thickness @ 650C 0.005305845
Thickness @ 700C 0.005363582

Experimental condition
▪ Normal: P_upstream ~ 1e5 Pa, P_down: 5-20Pa
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𝜕𝑐

𝜕𝑡
= ∇ ⋅ 𝐷∇𝑐

𝑐𝑁𝑖
𝐾𝑠,𝑁𝑖

2

=
𝑐𝐹𝐿𝑖𝐵𝑒
𝐾𝐻,𝐹𝐿𝑖𝐵𝑒

𝐽 = −𝐷∇𝑐
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Uncertainty 

▪ Mesh uncertainty almost negligible, mesh independence study has done

▪ Relative system error from gas chromatograph (GC): 𝑢𝑠 =
ΔPPMGC

PPMGC
≈ 1.00011%

▪ Measurement error 𝑢𝑟:
• N steady state measurement data 𝑦𝑖 , 𝑖 = 1…𝑁
• Average: ത𝑦

• Standard deviation: 𝑠𝑡𝑑 =
σ𝑖=1
𝑁 𝑦𝑖−ത𝑦 2

𝑁−1

• Standard uncertainty of the mean: 𝑢𝑟 =
𝑠𝑡𝑑

𝑁

▪ Combined standard uncertainty 𝑢𝑐 = 𝑢𝑠 ത𝑦
2 + 𝑢𝑟

2

▪ Expanded uncertainty at 95% confidence: U = 2 𝑢𝑐



Fitting of permeability: swap configuration liquid side as upstream
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4.38 × 1011 exp −
0.162

𝑘𝐵𝑇
~1.67 × 1012 exp −

0.235

𝑘𝐵𝑇



Fitting of permeability
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FLiBe details
LiF–BeF₂ molten salt (typically 66–34 mol%)
Originally developed at ORNL (MSRE)

➢ Excellent Neutron Performance
▪ Lithium enables efficient tritium breeding
▪ Beryllium acts as a neutron multiplier
▪ Supports compact, high-performance blanket designs

➢High Thermal Stability
▪ Operating range: ~500–900 C
▪ Low vapor pressure → compatible with near-vacuum systems
▪ Excellent heat transfer capabilities

➢Chemical & Radiological Stability
▪ Low swelling under irradiation
▪ No violent boiling under off-normal conditions
▪ Chemically stable fluoride system

➢ Liquid Blanket = Self-Healing & Reconfigurable
▪ No radiation damage accumulation like solid blankets
▪ Salt can be purified, reprocessed, and reused online

25



26

Property FLiBe (LiF–BeF₂) FLiNaK (LiF–NaF–KF) PbLi (Liquid Metal)

Tritium breeding

Neutron multiplier

Phase Molten salt Molten salt Liquid metal

Operating temp. ~500–900 C ~450–900 C ~500–800 C

Vapor pressure Very low Very low Very low

Electrical conductivity Low (good for MHD) Low High (severe MHD issues)

Chemical safety Stable fluorides Stable fluorides Reactive with air/water

Radiation damage Self-healing (liquid) Self-healing Self-healing

Tritium leakage risk Moderate–High Low–Moderate High

Data availability Sparse & inconsistent Moderate Extensive
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