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(I) INTRODUCTION
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1.1. About EX-Fusion

Osaka, Headquarters

Australia

United States,
Reactor systems

Hamamatsu, R&D

Kyoto, Laser Processing

R&D Partners Japan

~50 people

R&D Partners U.S.A

Tokyo, lead-lithium 
synthesis
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1.2. Direct Drive Fast ignition
Fast ignition is 10x more efficient in energy transfer compared to central ignition (NIF) 

… or requires one tenth the laser power
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1.2. Direct Drive Fast Ignition

Physics of Plasmas. 2022;29(6). doi:10.1063/5.0083990

Central Ignition, NIF (Indirect Drive): 
H. Abu-Shawareb et al., Phys. Rev. Lett. 129, 075001 (2022)

OMEGA (Direct Drive): 
V. N. Goncharov et al, Phys. Plasmas 21, 056315 (2014)

Fast Ignition, FIREX (Direct Drive + External Heating):
K. Matsuo et al., Phys. Rev. Lett. 124, 35001(2020)
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1.3. Development Roadmap: Towards a Commercial Plant

Grid Power Input Laser Power Output

Electricity to laser 
diode efficiency

High frequency 
laser operation

Steady State Output

Estimated 
Energy Gain

Thermal Output Electric Output

<1% 
efficient

2.05 MJ
(≈10kJx 192)

400 MJ 8 hours 
per shot8.4 MJQs = 42022

NIF

Power cycle 
efficiency

– – –

>10% 
efficient 1.5 MJ15 MJ 10 Hz300 MJQs = 200 3,000 

MWt

~33% 
efficient

1,000 
MWe

2040
Commercial

XF-1400
Qgrid= 7

$0.05/kWh

Price of elec. 
$/kwh

Repetition rate is one of the most important parameters to prove that laser fusion is a commercial endeavour, not 
just a demonstration
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Phase I.I
Low flux neutron demo

0.1 - 1 kJ laser
104-105 n/source

5 - 10 Hz

Phase II
Scientific breakeven

SOLLIS
Commercial FOAK

2027 2029 - 2032

2035

2040+

Q = 0.1 -1 
1-shot chamber

Osaka Institute of Laser 
Engineering (ILE) contract

Phase I.II
High flux neutron demo

8-12 kJ laser
1011-1013 n/source

10 Hz

2030

Phase 0
Target engagement

2024

IGNIS

1.4. Reactor Roadmap
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Phase I.I
Low flux neutron demo

0.1 - 1 kJ laser
104-105 n/source

5 - 10 Hz

2027

Phase I.II
High flux neutron demo

8-12 kJ laser
1011-1013 n/source

10 Hz

2030

1.4. Reactor Roadmap
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1.5. Considerations: Key Parameters for Phase I
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Conditions for Phase I.I (2027)

• Chamber shape: Spherical test chamber 

• Chamber radius: 0.5 m

• Surface area: 1.74 m2

• Laser energy: 1kJ 

• Neutron yield: 104-105 n/shot

• Repetition rate: 10Hz 

• Input power: 10 kW

• Energy reflection: 80% reflectivity from the pellet

• Output power: 8 kW

• Intensity: 8,000 W / 1.74 m2 = 4,597 W/m2

• Operational time: 1 hour

• Fuel type: DD

Conditions for Phase I.II (2030)

• Chamber shape: Cylindrical test chamber 

• Chamber axial radius: 0.6 m (Height = 2m)

• Surface are: 8.3 m2

• Laser energy: 8-12 kJ (~10 kJ)

• Neutron yield: 1011-1013 n/shot

• Repetition rate: 10Hz 

• Input power: 100 kW

• Energy reflection: 80% reflectivity from the pellet

• Output power: 80 kW

• Intensity: 80,000 W / 8.3 m2 = 9,600 W/m2

• Operational time: 1 hour

• Fuel type: DD



(II) SYSTEMS 
ENGINEERING 
PERSPECTIVE
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9. Waste Management System

Debris 
Removal

Waste 
Processing

Chamber (radiation exposed)

3. Laser protection system

4. Injector system

1. Laser system

Comp. laser ★

Injector ★

Plasma ★

11. Diagnostic System

DiagnosticData 
Analysis

Key

Joint effort 
w/ othersOutput EX-FusionInput

★  EX-Fusion’s proprietary technologies

6. Vacuum System

Vacuum  pump 
Gaseous tritium 

extraction

5. FW-Chamber system

First wall ★Final optics

2.1. Continuous Neutron Demonstrator (Phase I)
Systems Map

2. Beam Control System

DM ★

8. Target factory

Target fabDeuterium

12. Electric transmission system

Cabling
Site 

network

7. Fuel cycle system

Hydrogen separation 
& analysis

Heat. laser ★

SM ★

Target 
inspection

Building 
containment

10. Shielding system

13. Water cooling system

Laser 
cooling

Pump 
cooling
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9. Waste Management System

Debris 
Removal

Waste 
Processing

Chamber (radiation exposed)

3. Laser protection system

4. Injector system

1. Laser system

Comp. laser ★

Injector ★
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11. Diagnostic System
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w/ othersOutput EX-FusionInput

★  EX-Fusion’s proprietary technologies

6. Vacuum System

Vacuum  pump 
Gaseous tritium 

extraction

5. FW-Chamber system

First wall ★Final optics

2.1. Continuous Neutron Demonstrator (Phase I)
Reactor Team’s scope

2. Beam Control System

DM ★

8. Target factory

Target fabDeuterium

12. Electric transmission system

Cabling
Site 

network

7. Fuel cycle system

Hydrogen separation 
& analysis

Heat. laser ★
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Target 
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Building 
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10. Shielding system

13. Water cooling system

Laser 
cooling

Pump 
cooling
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Experimental Facility 

Economical 
considerations

Final optics design

Vacuum 
requirements

particle 
transport 
studies

CFD studies
particle 

transport 
studies

mechanical 
studies

• Maximum allowable load
• Distance requirements
• Material selection

• Chamber material selection 
• Chamber shape
• Temperature profile
• Von Mises stress profile
• Cooling
• Cracking
• Failure point studies

Laser 
arrangement

2.2. Continuous Neutron Demonstrator (Phase I)
Multiphysics requirements

Radiation Safety

Tritium 
transport 
studies

particle 
transport 
studies

• T accountancy 
• In vessel tritium retention
• Losses in gaseous extraction system
• Circulation in the room

• Component vs. system vs. facility level 
• Shielding Analysis 
• Dose rate (during operations / after shutdown)
• Activation analysis (+ rad waste management)
• Variance reduction for Monte Carlo simulation

Chamber integrity



(III) CHAMBER 
MECHANICAL 

STUDIES
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3.1. Considerations: CAD Model



XF – Approved for public distribution © 2025 EX-Fusion. All Rights Reserved.Author: Max Monange

17

3.1. Considerations: DD Fusion

2H

2H

+

3H 
(1.01 MeV)

++ p

3He
(0.82 MeV)

+

+

n

+

+

50%

50%

(3.02 MeV)

(2.45 MeV)
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3.1. Considerations: Key Parameters for Phase I
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Conditions for Phase I.I (2027)

• Chamber shape: Spherical test chamber 

• Chamber radius: 0.5 m

• Surface area: 1.74 m2

• Laser energy: 1kJ 

• Neutron yield: 104-105 n/shot

• Repetition rate: 10Hz 

• Input power: 10 kW

• Energy reflection: 80% reflectivity from the pellet

• Output power: 8 kW

• Intensity: 8,000 W / 1.74 m2 = 4,597 W/m2

• Operational time: 1 hour

• Fuel type: DD

Conditions for Phase I.II (2030)

• Chamber shape: Cylindrical test chamber 

• Chamber axial radius: 0.6 m (Height = 2m)

• Surface are: 8.3 m2

• Laser energy: 8-12 kJ (~10 kJ)

• Neutron yield: 1011-1013 n/shot

• Repetition rate: 10Hz 

• Input power: 100 kW

• Energy reflection: 80% reflectivity from the pellet

• Output power: 80 kW

• Intensity: 80,000 W / 8.3 m2 = 9,600 W/m2

• Operational time: 1 hour

• Fuel type: DD
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3.1. Considerations: Neutron number depends on laser input energy 

1. Implosion-Mimic Laser: 

• Four-beam

• 0.53 µm wavelength 

• 4 J per 10 ns pulse 

• 10 Hz

2. Heating-Mimic Laser: 

• Two-beam 

• 0.8 µm wavelength
• 0.2J per 100 fs pulse (2TW) 

• 10 Hz

➢ Upgrades are planned to achieve 
10 TW (0.6 J/60 fs).
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3.1. Considerations: Energy deposition

(1)

(1)

(2)

(2)

Laser energy

• Key phenomenon: laser reflection

• At low laser input energies, ~20% of the laser 
energy is coupled to the pellet

• The rest (80%) is reflected off the target

Particles

• At low fluences (104—1013/n/shot/area), the 
energy deposition from neutrons (2.45 MeV 
in DD fusion), protons (3.02 MeV), and other 
particles in negligible on nuclear heating if 
the particle distribution is uniform across the 
chamber

➢ 10-9J/shot for for Phase I.I

➢ 5.2 – 6.5 J/shot/area for Phase I.II 
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3.1. Considerations: Note on the heat source (Transient vs. Steady State)
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Comparison between transient and Steady-state heat source impact on Stainless 
Steel in a 1 second run time.

• Pulsed transient thermal simulation operating at 10 Hz for extended time periods is too computationally 

expensive

• Both the transient and steady-state sources produced similar results in terms of temperature increase.

➢ Therefore, the steady-state heat source was used for the thermal shock studies 

Pulsed surface temperature vs. time (10 shots) with refined timestep
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3.2. Chamber material selection 

• Steady-state thermal simulation with a constant surface heat flux (80 kW)

Ansys simulation showing thermal response of bare ODS 
FeCrAl first wall sample at commercial reactor conditions

Material Temperature 

Limit [oC]

Stainless Steel 316L 415

Aluminum 6064 205

Titanium Grade 1 315

Zircaloy Z4 400

Tungsten 850

RAFM Steel 550

Materials with their temperature limits [ASME BPV] and Maximum 
Allowable Operational Time (MAOT)
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3.2. Chamber material selection 

• MAOT = time at which the material reaches its maximum allowable temperature

• Only three materials passed: Stainless Steel 316L, Titanium Grade 1, and RAFM Steel

Material Temperature 

Limit [oC]

MAOT 

[min]

Stainless Steel 316L 415 90 

Aluminum 6064 205 25

Titanium Grade 1 315 40

Zircaloy Z4 400 45

Tungsten 850 300

RAFM Steel 550 145

Materials with maximum allowable temperature limits [ASME BPV] 
and Maximum Allowable Operational Time (MAOT)

Time dependent temperature evolution of material candidates with 
constant 80 kW surface heat flux applied
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3.3. Temperature & Stress Profile [Phase I.I]

Temperature distribution profile Static Structural Stress Analysis

• Source: surface heat flux of 4.6 kW/m2

• Module: Ansys Transient Thermal



XF – Approved for public distribution © 2025 EX-Fusion. All Rights Reserved.Author: Max Monange

26

3.3. Temperature & Stress Profile

Material temperature 1 % Yield strength of Stainless steel, Rp 1.0 Tensile strength of Stainless steel, Rm

100 / 212 °C/°F >= 199 / >= 28.9 N / mm² / ksi 430 / 62.4 N / mm² / ksi

200 / 392 °C/°F >= 167 / >= 24.2 N / mm² / ksi 390 / 56.6 N / mm² / ksi

300 / 572 °C/°F >= 145 / >= 21.0 N / mm² / ksi 380 / 55.1 N / mm² / ksi

400 / 752 °C/°F >= 135 / >= 19.6 N / mm² / ksi 380 / 55.1 N / mm² / ksi

500 / 932 °C/°F >= 128 / >= 18.6 N / mm² / ksi 360 / 52.2 N / mm² / ksi

Properties of AISI 316 / 316L stainless steel sheets and plates
[Source: mirrorinox]

https://mirrorinox.de/en/stainless-steel-grades/316-stainless-steel-sheet/
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3.3. Stress Profile: Comments [Phase I.I]

Static Structural Stress Analysis

Yield Stress

• Maximum Von Mises stress of ~60 MPa | Maximum T of 138ºC

• Compared to yield strength of ~180 MPa @140ºC

Assumptions

• This is a very simplified model - we will add:

(1) Ray tracing / direct ordinate simulation for more accurate 
temperature distribution, especially inside the beam ports

(2) Appropriate cooling mechanism (no cooupling)
• We assumed natural convection air cooling 
• But we need to take in account locational dependence of the heat 

transfer coefficient (varies based on T gradient, fluid velocity )

Next step

• Model validation via experiment in Osaka ILE
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3.4. Temperature & Stress profile [Phase I.II]

Chamber temperature profile Static Structural Stress Analysis

• Source: surface heat flux of 9.6 kW/m2

• Module: Ansys Transient Thermal

Note: No coupling i.e., no convective air cooling in the room  
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3.4. Temperature & Stress profile [Phase I.II]: Comments

Comments

• Max temperature: 188ºC

• Max stress: 42 MPa (Yield is ~180 MPa)

• Highest stress concentration where the 
chamber rests on the skirt 

Temperature distribution profileStatic Structural Stress Analysis

Note: No coupling i.e., no convective air 
cooling in the room  



XF – Approved for public distribution © 2025 EX-Fusion. All Rights Reserved.Author: Max Monange

31

3.5. CFD Temperature Profile [Phase I.II]

Chamber temperature profile after 60min of 
operations 

(Max T = 198ºC)

Room temperature profile (8m x 10m)Air velocity profile after 60min of operations
(Max velocity = 2m/s)

• Module: Ansys Fluent

• New temperature profiles with appropriate cooling 
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3.5. CFD to Static Structural Stress Coupling

CFD 
(heat transfer)

Structural

Temperature

Fields passed between 

codes 
Software



(IV) CHAMBER 
NEUTRONICS
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For considerations in our particle transport studies…

1. Component vs. system vs. facility level 

2. Shielding Analysis 

3. Laser and final optics protection

4. Dose rate

a. Dose rate during operations 

b. Dose rate after shutdown

5. Activation analysis (+ rad waste management)

6. CAD to neutronics conversion (meshing)

7. Variance reduction for Monte Carlo simulation

8. In vessel tritium retention
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Experimental facilities
Osaka University | Institute of Laser Engineering (ILE)

Particle transport conditions

• Fuel type: DD

• Neutron number: 104-5/shot (Phase I.I) and 1011-13/shot 
(Phase I.II) 

• Nuclear energy: 10-9J/shot (Phase I.I) and 5.2–6.5 J/shot 
(Phase I.II)

• Repetition rate: 10Hz 

• Operation time: 1 hour
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4.1. CSG Model [Phase I.I]

Mainly using CSG geometries in particles transport 

simulations, making fast iteration hard (haven’t achieved 

clean workflow for tetrahedral meshing with PHITS 

independently yet)
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4.1. CSG Model [Phase I.I]

Human (2)SENJU Laser

D-D fusion

Test chamber 1 Test Chamber 2
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4.1. CSG Model [Phase I.I]
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4.2. Neutron track after implosion [Phase I.I]
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4.3. Particle flux (T-Track Tally) [Phase I.I]

Tritium Helium-3Proton

Neutron Photons (Gammas)



XF – Approved for public distribution © 2025 EX-Fusion. All Rights Reserved.Author: Max Monange

43

4.4. CSG Model [Phase I.II]
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4.5. Neutron track after implosion [Phase I.II]

Neutron



(V) DOSE CALCULATIONS
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5.1. Dose analysis: Simulation Set-up  

Unshielded Shielded

1 2 3

• Bodies (cylinder with mix of 8% bone and 92% tissue) were located at different locations in the room

• Used the ICRU “compact bone” definition (density ≈1.85 g/cm³) is the standard reference for average 
adult human bone in dosimetry and treatment-planning. 
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5.2. Dose Analysis: Results during operations (Dchain Tally)

Fluence [1/cm2] Effective Dose rate [μSv/hr]



XF – Approved for public distribution © 2025 EX-Fusion. All Rights Reserved.Author: Max Monange

48

5.3. Dose Analysis: Results after shutdown (Dchain Tally)

All plots taken at the 
vacuum vessel

Highest activity: 

• 56Mn > 3H > 58Co > 99Mo > 51Cr > 59Fe > 63Ni

Highest dose rate: 

• 56Mn > 58Co > 99Mo > 59Fe > 51Cr

Highest decay heat: 

• 56Mn > 58Co > 99Mo > 3H >  59Fe > 51Cr > 63Ni
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5.4. Conclusion: Dose delivered

Spherical vessel 
1×105 neutrons/source  

Cylindrical vessel 
1×1011 neutrons

×106 greater

DOSE RESULTS

Body Phase I.I - Effective dose [μSv/shot]

Unshielded room (actual ILE) Shielded room 

1 9.02·10-8 0.00

2 1.23·10-2 1.13·10-2

3 6.88·10-4 3.83·10-4

DOSE RESULTS

Body Phase I.II - Effective dose [μSv/shot]

Unshielded room (actual ILE) Shielded room 

1 0.00 0.00

2 1.22·104 1.18·104

3 1.97·103 1.40·103

1 = outside 
2 = next to vessel 
3 = other side of the room
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5.4. Conclusion: Dose delivered

Category Limit Type Limit Value Converted / Context

Radiation 

Worker
Trained 

personnel

Annual effective dose (whole 

body)

50 mSv/year ≈ 0.96 μSv/hr (if exposed 

24/7)

Lens of eye dose 150 

mSv/year

≈ 2.9 μSv/hr (if continuous)

Shallow dose (skin/extremities) 500 

mSv/year

≈ 9.6 μSv/hr (if continuous)

General Public

In unrestricted 
area

Annual effective dose 1 mSv/year ≈ 0.114 μSv/hr (if exposed 

24/7)

Instantaneous dose rate limit 25 μSv/hr Short-term rate limit

Weekly dose (NRC guidance) — ≤ 500 μSv/week (to stay 

ALARA)

Dose limits guidelines [NRC]

DOSE RESULTS

Body Phase I.II - Effective dose [μSv/shot]

Unshielded room (actual 

ILE)

Shielded room 

1 0.00 0.00

2 1.22·104 1.18·104

3 1.97·103 1.40·103



(VI) FINAL OPTICS 
DAMAGE
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6.1. Beam Control in IFE
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Key components of the laser control system

Steering mirror Deformable mirror Final mirror

T. Norimatsu et.al., Nucl. Fusion 57 (2017) 116040

Consists of three mirrors
1. Steering mirror

2. Deformable mirror

3. Final mirror

Adjusts the laser beam direction to track the flying target's 
position.

• 10Hz track:
Settling time < 80 ms

• High precision:
Accuracy ≤ 10 µm 
@30m = ± 0.167 μrad

Mirror shape is actively controlled to compensate for 
wavefront

• High heat resistance 
≥ 100°C (piezoelectric 
types are ~60°C)

• Correction for Zernike 
terms ≥ 7th order

Final-stage focusing mirror for precise laser 
delivery to the target

Requires high heat 
resistance, low-
activation 
materials, and 
regular 
replacement.

Low-melting-point metal mirrorsUtilizes a novel-material deformable mirror
This steering mirror incorporates optical sensing technology 

developed for gravitational-wave detection
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6.1. 6-inch Steering Mirror Achieves Commercial Standards

53

YAW

PITCH

Target tracking
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6.2. CAD Geometry
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Beam line vacuum

Borosilicate Glass 
(Vacuum Barrier)

Silica Mirror

Portland Concrete
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6.3. Particle flux @system level (T-Track Tally)
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NeutronPhotons (Gammas)
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6.3. Particle flux @facility level (T-Track Tally)

Neutron track distribution in the beam port
(Units are 1/cm2⨯hour)

Gamma track distribution in the beam port
(Units are 1/cm2⨯hour)

Section view 
Magenta = air 

Yellow = HDPE 
Blue = concrete 

Green = lead

SimpleGeo Model - top view

• Distance to of the mirrors to the chamber is a fully 
controllable parameter
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6.4. DPA distribution on the final mirror
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Dpa distribution (material: SiO2)

• 2·10-10 DPA per shot 

• 7.2·10-7 to DPA per hour

• 0.0063 DPA per year

Heat deposition

• ?
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6.5. Activation of the final mirror

58

• P-32 and Si-32

Inventory of isotopes 

• Si-32: 3.37·10-5 atoms

• P-32: 3.34·107 atoms

• After 1 day of DT irradiation for 
a 40 MW reactor

Plot of the total activity of a SiO2 mirror after irradiation 



(VI) EVOLUTION 
OF OUR MOD-SIM 
STRATEGY
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Mod-sim Workflow to Facilitate Multiphysics Coupling
Our Current Approach at the Systems Level

advectionTemperature
Tritium 

generation

Temperature

Fields passed between 

codes 
Software

Nuclear 

heating

Particle transport CFD 
(heat transfer + hydraulics)

Tritium transport

Mechanical / Structural
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Mod-sim Workflow to Facilitate Multiphysics Coupling
Our Current Approach at the Systems Level

advectionTemperature
Tritium 

generation

Temperature

Fields passed between 

codes 
Software

Nuclear 

heating

Particle transport CFD 
(heat transfer + hydraulics)

Tritium transport

Mechanical / Structural



CFD 
(heat transfer + hydraulics)

Structural

Coupling so far
For Test Chamber

Temperature

Fields passed between 

codes 
Software
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Choice of Multiphysics Framework: Short- & Long-Term Strategy
From Test Chamber to FPP

2026 2029 2030+20272025 2028 2030

or 
FERMI 

depending on 

our conclusions

Phase I.I Phase I.II Phase III Phase IV

Phase out 

Ansys

Decision process
(2026)



(VII) Conclusion
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Progress: Key points 
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Experimental Facility 

Economical 
considerations

Final optics design

Particle 
transport 
studies

CFD studies
particle 

transport 
studies

mechanical 
studies

Radiation Safety

Tritium 
transport 
studies

Particle 
transport 
studies

Chamber integrity
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Future work

66

Experimental Facility 

Economical 
considerations

Final optics design

Particle 
transport 
studies

CFD studies
particle 

transport 
studies

mechanical 
studies

Radiation Safety

Particle 
transport 
studies

Chamber integrity

2-way coupling in progress (CFD + structural mechanical) using Ansys 

3-way coupling on the roadmap (neutronics + CFD + mechanical)

4-way coupling will be outsourced / completed using an existing Multiphysics framework

90%0% 90% 75% 50% 80%
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Leveraging Already Existing Multiphysics Frameworks
For System-level Modeling

Feature 

importance (1-
5)

Has PHITS Yes (can be integrated, will take time) No 5

User interface / 

friendliness
? ? 5

User support Needs funding, documentation not released yet Workshops, referred to documentation, large active team 5

Open Source In progress, may take time Yes 4

Individual apps Relies on existing apps / softwares with larger user base  INL created their own CFD / mechanical codes 4

Performance ? Heard it can be slow to run 4

Support pricing/h ? ? 4

Existing users CFS, ITER UKAEA, UCLA, IDIOM (no private fusion company) 3

V&V No existing validation against experiments? Extensive V&V and documentation for individual apps 3

Physics coupling
Proprietary to ORNL 

Each software has the same source code making it easier 

for apps to “talk to one another”, push framework-wide 
updates 

2

Meshing Very strong meshing alignment between softwares through 

Cubit
? 2
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