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MOOSE : Multiphysics Object Oriented Simulation 
Environment

• Started in 2008 in the INL Laboratory Directed Research and Development program

• Open-sourced in 2014

• Solves Partial Differential Equations, tied to a variety of Physics, using finite element and 
finite volume discretizations

• Large international user base

• Undergoing strong growth in user base and contributions
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MOOSE Modules

Physics modules

• Heat Transfer

• Solid Mechanics

• Contact

• Phase Field

• Porous Flow

• Navier-Stokes (FE & FV)

• Chemical Reactions

• Thermal hydraulics

• Fluid Structure Interaction

• Electromagnetics

• Scalar Transport

• Geochemistry

Numerics modules

• Reconstructed Discontinuous Galerkin

• eXtended Finite Element (XFEM)

• Level Set

• Functional Expansion Tools

• Stochastic Tools

• Ray Tracing

• External petsc solver

• Optimization

Others / Cross-cutting

• Reactor

• Fluid properties

• Solid Properties



Navier Stokes module

• A library for the implementation of simulation tools 
that solve the multi-dimensional Navier-Stokes 
equations using either the continuous Galerkin 
finite element (CGFE) or the finite volume (FV) 
method. The Navier-Stokes equations may be 
solved with:

− An incompressible formulation (CGFE & FV)

− A weakly compressible formulation (FV)

− A fully compressible formulation (FV)

• K-epsilon turbulence model available, and k-
omega-SST to be released

• Basis for open-source CFD code OpenPronghorn, 
released June 2025

Top: demonstration of the segregated solver on a T-

junction

Bottom: velocity and temperature results for Hi-STORM 

spent fuel cask cooling

Bottom figure from “Development of a MOOSE thermal model of 
the MPC-32 canister and HI-STORM overpack”, Okyay et al.



Solid Mechanics module

• The Solid Mechanics module is a library of simulation 
tools that solve continuum mechanics problems. It 
provides a simple approach for implementing even 
advanced mechanics models:

− Plug-n-play design enables users to incorporate 
the relevant physics for specific and varied 
simulations

− Tensor implementation matches mathematical 
theory

− Straight-forward procedure for adding new physics

• The solid mechanics system can be used to simulate 
both linear and finite strain mechanics, including

− Elasticity and Cosserat elasticity

− Plasticity and micromechanics plasticity,

− Creep, and Damage due to cracking and property 
degradation

Left: Thermo-mechanical stress analysis of a reactor 

pressure vessel

Right: Simulation of a fractured ceramic nuclear fuel 

pellet in the MOOSE solid mechanics module—the 

contours of the damage index, with higher values 

corresponding to more damage 



Optimization module

• Leverages the TAO library for inverse optimization

Figure by Lynn 

Munday (INL)



Electromagnetics module

• Transient and time-harmonic (i.e., single-
frequency, steady-state) simulation in 1D and 
2D (3D is currently in development)

• Component-wise (scalar variables) and 
vector field (vector variables) components 
for the Helmholtz wave form of Maxwell's 
Equations

• Complex field calculations

• First-order port boundary conditions (scalar 
and vector forms)

• Verification cases with 2D waveguide and 1D 
slab

From “The MOOSE electromagnetics module”, SoftwareX 2024

Simulated steady state radiation intensity pattern of a 

vertically-oriented half-wave dipole antenna driven at 1 GHz.



Recent developments : MOOSE framework

• New discretization methods:

− Finite volumes

− Side variables

− Hybridized Discontinuous Galerkin

− Isogeometric Analysis (IGA)

• Mixed-simulation type restarts

• Arbitrary region meshing : 2D and 3D

• P-refinement

• Constructive Solid Geometry support

• Multiple linear and nonlinear systems

• Standardized Physics syntax

• Functional Mockup Interface (see end of presentation)



New discretization methods

• Finite volumes

− Cell-centered variables, with 1st and 2nd order interpolations

• Face variables

− SIDE_HIERARCHIC: Hierarchical polynomials on element 
sides, discontinuous at vertices and edges

− Requires mesh elements with side nodes: EDGE2/3, 
QUAD8/9, HEX27, TET14, PRISM20 and PYRAMID18

− Isometric Geometric Analysis (IGA)

− Solving on higher order geometries 

• Hybridized discontinuous Galerkin (HDG)

− Higher order, conservative, and reduced system size 
compared to regular DG

v(x) ∈ ∏(K1,K2) 

Q(∂K1∩∂K2 )
Face variables on 

element side nodes

Reactor Pressure Vessel mesh (body-
fit mesh, extraction operator a 
straight 1-to-1 mapping to NURBS

Figures from Roy Stogner



Arbitrary region meshing

• 2D triangle and 3D polyhedral meshing were added to MOOSE by leveraging 
Poly2Tri and Netgen respectively

• Polygonal and polyhedral meshes now supported in libMesh

• Used in reactor & breeding blanket meshing

General surface 

triangulation

Mesh of the 

Lightbridge 

accident-tolerant 

fuel

A torispherical dome of a typical 

containment meshed in MOOSE

Triply periodic minimal surfaces 

(TPMS) meshed in MOOSE

Figures from Yinbin Miao and Patrck Behne

Hexagonal element 

paving of a 2D square



More Efficient Solves: Multiple solver Systems in the 
Same Input

• A monolithic Newton’s method can perform 
poorly when an initial guess is far from the 
solution

• This has been observed particularly in our TH area 
when adding required coarse-mesh turbulence 
models for advanced reactor types such as MSRs

• Some traditional Computational Fluid Dynamics 
solver algorithms which segregate variables can 
fare much better

• This has been leveraged by the TH area to create 
a native MOOSE Semi-Implicit Method for 
Pressure Linked Equations (SIMPLE) 
implementation applicable to high Reynolds 
number flows



Increased Accuracy from Polynomial 
Basis Refinement (p-refinement)

• p-refinement can be used in 
neutron transport to model neutron 
attenuation in absorbers without 
cusping effects

• p-refinement allows for exponential 
rates of convergence in accuracy

• Along with p-refinement, MOOSE 
added the capability to disable p-
refinement for select finite element 
families

• Enables arbitrarily high order 
discontinuous families and low 
order Lagrange in the same 
simulation

Control drums in a 

micro-reactor.

Thermal flux

Base case (top)

H-adaptivity (middle)

P-adaptivity (bottom)

Core (below)



Constructive Solid Geometry (CSG) Support

This support aims to automate the geometry connection between MOOSE/MOOSE-

based apps and Monte Carlo (MC) codes for more reliable and efficient group 

cross section generation, code-to-code comparisons, generation of reference 

solutions, and multiphysics workflows.

CSG FEM

• This workflow builds CSG models 
from the mesh generator data, not 
the FEM output.

• The output is a generic definition 
which can then be connected to 
specific MC codes to translate it 
to code-specific input.

Slide by K. Kiesling and 

S. Kumar



Using AI to support research

• Keyword & examples search

• Provide recommendation on 
complex topics such as 
preconditioning systems

• Generate a template-type input 
file from the physics description

• Fine tune the input file via an 
interactive conversation

Related work:
1. B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, 

X. E. Tan, Y. Adi, J. Liu, T. Remez, J. Rapin and others, 

"Code llama: Open foundation models for code," {arXiv 

preprint arXiv:2308.12950, 2023. 

2. J. A. Prenner and R. Robbes, "Automatic Program 

Repair with OpenAI's Codex: Evaluating QuixBugs," 

arXiv preprint arXiv:2111.03922, 2021. 

Research by Mengnan Li (INL)16



Agent MOOSE will support you

• A live agent babysits ongoing MOOSE 
simulation

• Provide model state information, 
simulation status, model results upon 
user request

• Assistant multiphysics simulations with 
model fidelity switch, correlation 
selection, convergence issue, 
spatial/time resolution changes

• Offer a versatile I/O to Python-based 
AI/machine learning (ML) model  

Agent MOOSE

Information Hub
• Model state

• Simulation status

• Results

• …

Toolbox
• Stochastic tools

• Reduced order 

models

• High-fidelity 

model

• PINN solver

• …

Modeler

Conversation     

I/O

• In-house ML 

model

• Control system

MOOSE Simulation

Research by Mengnan Li (INL)17



Graphics processing units (GPU) for distributed computing

CONNECT: Creation Of Next-generation Nuclear Energy Computational 
Technology

• Meant to connect DOE Office of Science (DOE-SC) post-Exascale Computing 
Project (ECP) with DOE-NE

• ECP tools best leverage some of the new large-scale computing clusters

• ECP tools which the CONNECT framework team explored:

− MFEM

− libCEED

− Kokkos

• MFEM backend has been added to MOOSE in March 2025 from UKAEA 
developments

See: Electromagnetic Simulations in MOOSE using the MFEM Finite Element 
Library 12/11/25, 9:55 AM

By Alexander Blair (UK Atomic Energy Authority)

18

https://conferences.iaea.org/event/412/contributions/38757/
https://conferences.iaea.org/event/412/contributions/38757/


Kokkos GPU assembly + solve preliminary performance

• Simplified microreactor heat conduction problem (2.2M elements with 1.98M DoFs)

• ∼150 CPU core equivalent for residual computation, and ∼100 CPU core equivalent for 
Jacobian computation (effective values excluding shape function evaluation)

19

* AMD EPYC 9654 Single Core vs NVIDIA L4

Research by Namjae Choi and 

Alexander Lindsay (INL)



Deploying MOOSE for nuclear fusion R&D

20

• Fusion Energy Sciences Advisory Committee (FESAC) report, 2020, “Powering the 
Future, Fusion & Plasmas.” 

“An essential component underpinning this effort is a strong theory and computation 
program, including the advancement of multiscale, multiphysics theory and 
modeling capabilities necessary to predict the complex interactions between 
numerous plasma, material, and engineering processes.”

• Experimental data is rare and costly to obtain, making design particularly challenging. 
Predictive computational frameworks need to be an integral part of an accelerated and 
cost-effective design process by modeling fusion system performance in simulated 
environments.

• There is a need to support the growth of fusion engineering.

FESAC, Powering the Future, Fusion & Plasmas, 2020 report

is well-suited for this challenge 



Tritium Migration Analysis Program, version 8

Tritium Migration Analysis Program, Version 8 (TMAP8) GitHub repository: https://github.com/idaholab/TMAP8. Idaho Falls, Feb. 08, 2023

TMAP8
TMAP4 and TMAP7, although widely used, have significant limitations.

     TMAP8 enables high fidelity, multi-scale, 3D, multiphysics simulations of tritium transport. 

     TMAP8 is open source, Nuclear Quality Assurance level 1 compliant, expands on TMAP4&7 V&V,                                 

,    offers user support and massively parallel capabilities.

Model 

Development

and

V&V
3D pore microstructures
Using phase field modeling 

capabilities, TMAP8 can study 

the effect of real and 

simulated pore 

microstructure on 

tritium transport.

High-fidelity simulations 

in complex geometries 
TMAP8 has been used to 

model complex systems such 

as a divertor monoblock

and a full 3D breeder

blanket section.

Fuel cycle TMAP8 support fuel cycle 

calculations for rapid, full system analysis to 

track tritium inventory – going 

beyond TBR. These fuel cycle

models can be informed by

lower length-scale simulation

in a fully integrated manner.

Stochastic tools 
The use of stochastic 

tools supports model 

calibration, experimental 

analysis, and 

quantification of 

uncertainty.

Breeding Material

Multiplier Material

First wall



Software for Advanced Large-Scale Analysis of MAgnetic 
confinement for Numerical Design, Engineering & Research 

       (SALAMANDER)

SALAMANDER GitHub repository: https://github.com/idaholab/SALAMANDER. Idaho Falls, April. 30, 2025

SALAMANDER SALAMANDER couples key physics for blanket systems

     SALAMANDER enables high-fidelity, multi-scale, 3D, multiphysics simulations

     SALAMANDER is open source, Nuclear Quality Assurance level 1 compliant, offers user support

  and massively parallel capabilities.

Volumetric heating rate

from neutronics (J/m3s)

Temperature

(K)

Tritium concentration

(atomic fraction)

Von Mises Stress

(Pa)Tritium Transport

Heat 

Conduction

Cardinal

Neutronics
Thermo

mechanics

Temperature

Temperature

Heating 

Rate

Plasma



Unstructured adaptive mesh 
refinement (AMR) with Monte 

Carlo tallies.

Cardinal: Fusion Multiphysics with AMR
K. Sawatzky et al., “Adaptive Mesh Refinement 

Applied to Unstructured Mesh Tallies in Cardinal” 
Proceedings of ANS (2025)

OpenMC neutron-photon transport

MOOSE’s Adaptive Mesh Refinement system 

Adapting tally 

meshes

Tallies (nuclear 

heating, dpa, ...)

The resolution of neutronics fields drives 

many multiphysics design metrics for 

fusion devices such as magnet heating, 

material damage, and heating of high-heat-

flux components.

NRT-dpa in first wall

Helium-Cooled Lithium Lead 

(HCLL) breeder blanket

Spatial resolution is refined in 

high-gradient regions.

Helium-Cooled Pebble 

Bed (HCPB) breeder 

blanket

23



NEAMS Thermal-hydraulic Codes overview

• SAM
• Trustworthy and practical plant-level system 

analysis tool for advanced reactors 

• Advances in software environments and design, 
numerical methods, and  physical models thanks 
to MOOSE.

• (Open)Pronghorn
• Engineering scale environment build on MOOSE

• Coarse CFD, subchannel and distributed 
resistance

• Nek5000 / NekRS
• Open Source, Spectral element high-fidelity code

• Proven scalability beyond a million MPI ranks 
(Gordon Bell prize). Now GPU-capable.

• Extensive code verification and validation

Flow around a twisted pin. (Nek)

See:

- ARC Divertor and Heat Exchanger 

Thermal Hydraulic Modeling using the 

Nek5000 CFD Code

12/9/25, 2:55 PM

- Fusion Energy System ARC System 

Modeling using SAM

12/12/25, 11:45 AM

Pr. Lane Carasiks:



Releasing OpenPronghorn
• OpenPronghorn is a growing state-of-the-art computational fluid 

dynamics (CFD) code supporting nuclear fission and fusion reactor 
thermal-hydraulics engineering.

• As development progresses, OpenPronghorn will provide:

− Validation base: Incompressible and weakly compressible one- 
and two-phase flows, with and without heat transfer, for nuclear 
reactor applications—supporting future commercial-grade 
dedications.

− Porous-media modeling: Models and correlations for coarse-
mesh analysis of advanced reactors.

− Turbulence models: One- and two-phase turbulence modeling, 
including re-laminarization and buoyancy-driven corrections, to 
support safety-case modeling for advanced fission and fusion 
applications.

− Phase change & transport: Aerosol transport and 
solidification/melting models to support design-basis accident 
analyses.

− Species & electrokinetics: Species tracking and electrokinetic 
modeling to support fuel-performance calculations in liquid-fuel 
systems.

− Radiation heat transfer: High-order radiation heat-transfer 
capabilities for fission and fusion systems.

DOE NEAMS; DOE ART; DOE AFC

Nuclear Reactor Technology | Reactor Systems and Heat Transport

Mauricio.TanoRetamales@inl.gov; Victor.CoppoLeite@inl.gov; David.Reger@inl.gov

Scientific Computing and Artificial Intelligence | Computational Frameworks

Peter.German@inl.gov; Ramiro.Freile@inl.gov; Guillaume.Giudicelli@inl.gov; Mengnan.Li@inl.gov; Logan.Harbour@inl.gov

High Fidelity CFD modeling of Accident 

Tolerant Fuel irradiation experiment 

using OpenPronghorn

Corrosion profiles in molten salt loop 

using OpenPronghorn

Conjugate heat transfer in molten salt 

reactor operation using OpenPronghorn

Two-phase flow in pump priming 

showing flow stream vectors and 

gaseous phase interface using 

OpenPronghorn



National Reactor Innovation 
Center Virtual Test Bed

1. Documentation
Detailed explanation of models

https://mooseframework.inl.gov/virtual_test_bed 

2. GitHub Repo
Hosts the models

3. Integration 
with Code 
Development
Continuous testing of 
models against codes 
using CIVET

https://mooseframework.inl.gov/virtual_test_bed


Functional Mockup Interface

Modern engineering simulations involve complex workflow, coupling of different 
modeling tools. To efficiently communicate between different software packages, 
we need a standardized interface for information transfer.

MOOSE: A power open-source framework for solving complex multiphysics 
engineering problems.

FMU/FMI Interface: A standardized tool-independent framework for the exchange 
and co-simulation of dynamic models in various engineering applications.

Slides kindly provided by Dr. Mengnan Li



Functional Mock-up Interface (FMI)

What is FMI: An open, tool-independent standard for exchanging dynamic 
simulation models. It is a popular industry tool

Applications: Automotive Manufacturer Co-Simulation, Aerospace Digital Twins & 
virtual Electronic Control Unit, and Integrated Energy System Optimization & 
Control

Purpose: Enables interoperability between different simulation software

Advantages: cross-platform, IP protection, simplified integration, open standard 
evolution & industry adoption

Interface Types:

o Model Exchange (ME): The FMU provides equations and algorithms, and the simulation 
environment provides the solver.

o Co-Simulation (CS): The FMU packages the model with its own numerical solver together. 
A FMU simulation platform(e.g MathWorks’ Simulink, Open Modelica) controls the 
simulation, coordinating the simulation by synchronizing with the FMU’s discrete time 
steps and exchanging data at defined communication points



FMU Application Example

MOOSE FMU

Modelica controls 

the simulation

Facility model 

composed of a mix 

of FMU & Modelica 

models

Instrumental 

provides input for 

the facility model: 

forming a digital 

twin 

Slide credit: Mengnan Li



Functional Mock-up Unit (FMU)

What is FMU: A ZIP archive defined by 
the FMI standard, including an XML 
model description file, compiled binaries 
or source code to enable standardized 
model exchange and co-simulation 
across diverse simulation tools.

• Packaging:

− ModelDescription.xml: Define 
interface, variables, parameters, 
capabiilites

− Compiled Model Code: 
implementing the standard FMI 
functions using FMU API packages

• Other resources

MOOSEFMU.fmu

modelDescription.xml

binaries

src

documentation

build_linux.sh

build_win.bat

make file



Explore FMI Compatible Interface with MOOSE

1. Utilize MOOSE Web Server Control
• MOOSE provides a web server control interface.

• It allows modifications to the MOOSE input file using a Python 

controller.

2. Develop the FMU Base Class (MOOSE2FMU.py)
• Define the fundamental structure for handling MOOSE-FMU 

coupling.

• Handle MOOSE executions: Set up MOOSE web server control

• FMUBase: Provides abstract and concrete methods for FMU 

interaction.

3. Build Customized MOOSE FMU based on user needs 

(MOOSETest.py)
• Inherit the MOOSEFMUBase class

• Initialization: Set default parameters and register variables based 

on problem needs.

• XML Representation: Define FMU model structure.

• Define the input/output: Specify all the variables and parameters 

the user wants to expose to external codes.

• Step Function: Define simulation step execution.

[Controls/web_server]

type = WebServerControl

port = 12345

execute_on = 'INITIAL TIMESTEP_BEGIN'

[]

result = simulate_fmu(

"MooseTest.fmu",

start_time=t0,

stop_time=t1,

start_values={

'flag': 'TIMESTEP_END',

'moose_executable': '../../../moose_test-opt',

'moose_inputfile': 'fmu_diffusion.i',

'server_name': 'web_server',

'max_retries': 10},

input = input_data,

output = ['time','moose_time’, 'diffused']

)

time = result["time"]

dt = result["moose_time"]

diff_u = result["diffused"]

MOOSE input file:

MOOSE FMU example:



Challenges and Complexities

• Parallelism: 

− FMI standard lacks direct support for parallel execution within an FMU. Managing 
MOOSE’s internal MPI/OpenMP parallelism within FMU wrapper needs careful 
design

• Dependencies & Portability:

− MOOSE relies on external libraries (e.g. libmesh, PETSc). These must be packaged 
correctly within the FMU for portability across different OS/environments

• Coupling PDE Solvers:

− FMI primarily exchanges scalar/vector variables, while MOOSE contains many spatial 
field variables. Strategies are needed to deal with those quantities (e.g. using 
postprocessors, stochastic tool)

• Fidelity & Coupling Schemes:

− Supporting different model fidelities and enabling MultiApp adds complexities



Conclusions

• MOOSE is a fast-growing open-source framework for multiphysics and multi-
fidelity simulations, with users in a growing number of fields

− ~500 user-developers on slack

− ~800 PRs a year

• Applications developed by the community leverage the physics modules to 
quickly set up simulations for targeted problems

• Fusion device engineering using MOOSE tools is pursued by several institutions

• Support for FMI standard 2.0 has been developed and to be merged in 2026

• Staying in touch:

− MOOSE Newsletter on website

− Github Discussions for all user questions

− moosedevelopers slack for developers



Other presentations using MOOSE tools

An Integrated Multi-physics Platform for the LIBRTI Facility    12/9/25, 11:00 AM

Helen Brooks (UKAEA)

Divertor Monoblock Multiphysics Analysis Using the SALAMANDER Code  12/9/25, 4:40 PM

Lane Carasik (Virginia Commonwealth University)

Bringing together integrated simulation, surrogates, and data to support digital twins for fusion engineering 
          12/10/25, 9:55 AM

Casey Icenhour (Idaho National Laboratory)

Electromagnetic Simulations in MOOSE using the MFEM Finite Element Library  12/11/25, 9:55 AM

By Alexander Blair (UK Atomic Energy Authority)

Software for Advanced Large-scale Analysis of MAgnetic confinement for Numerical Design, Engineering & 
Research (SALAMANDER)        12/12/25, 9:30 AM

Pierre-Clément Simon (Idaho National Laboratory)

Fusion Energy System ARC System Modeling using SAM    12/12/25, 11:45 AM

Lane Carasik (Virginia Commonwealth University)

https://conferences.iaea.org/event/412/contributions/38429/
https://conferences.iaea.org/event/412/contributions/38429/
https://conferences.iaea.org/event/412/contributions/38429/
https://conferences.iaea.org/event/412/contributions/38166/
https://conferences.iaea.org/event/412/contributions/38169/
https://conferences.iaea.org/event/412/contributions/38757/
https://conferences.iaea.org/event/412/contributions/38758/
https://conferences.iaea.org/event/412/contributions/38758/
https://conferences.iaea.org/event/412/contributions/38758/
https://conferences.iaea.org/event/412/contributions/38758/
https://conferences.iaea.org/event/412/contributions/38156/


Battelle Energy Alliance manages INL for the U.S. Department of Energy’s Office of Nuclear Energy. 

INL is the nation’s center for nuclear energy research and development, and also performs research 

in each of DOE’s strategic goal areas: energy, national security, science and the environment.



Software Quality Assurance

• INL is audited yearly by ASME on the compliance of its quality assurance program to 
NQA-1

• MOOSE and all the applications developed at INL follows SQA practices defined by 
the INL SQA Plan 4005 

• In practice for MOOSE:

− Independent code reviews

− Automated software quality documentation generation

− Continuous integration achieved through:

• An extensive test suite involving >50 configurations and 10k tests per config.

• A dedicated testing cluster (3,500 cores)

• Continuous integration services offered to other application teams

− INL is not a qualified supplier, so Commercial Grade Dedication is performed by 
the end user 
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