
Overview of the capabilities in the
Multiphysics Object Oriented Simulation
Environment (MOOSE) and recent activities
in modeling and simulation for fusion
energy systems

Guillaume Giudicelli

Pierre-Clément Simon

Casey Icenhour

INL/CON-25-06153

MOOSE : Multiphysics Object Oriented Simulation
Environment

• Started in 2008 in the INL Laboratory Directed Research and Development program

• Open-sourced in 2014

• Solves Partial Differential Equations, tied to a variety of Physics, using finite element and
finite volume discretizations

• Large international user base

• Undergoing strong growth in user base and contributions

Ecosystem of the MOOSE-based applications

MOOSE-Based

Open-source

apps

Physics

Modules

MOOSE-Based

Closed source

apps

MOOSE-

wrapped

External apps

MOOSE

Combined

applications

MOOSE Modules

Physics modules

• Heat Transfer

• Solid Mechanics

• Contact

• Phase Field

• Porous Flow

• Navier-Stokes (FE & FV)

• Chemical Reactions

• Thermal hydraulics

• Fluid Structure Interaction

• Electromagnetics

• Scalar Transport

• Geochemistry

Numerics modules

• Reconstructed Discontinuous Galerkin

• eXtended Finite Element (XFEM)

• Level Set

• Functional Expansion Tools

• Stochastic Tools

• Ray Tracing

• External petsc solver

• Optimization

Others / Cross-cutting

• Reactor

• Fluid properties

• Solid Properties

Navier Stokes module

• A library for the implementation of simulation tools
that solve the multi-dimensional Navier-Stokes
equations using either the continuous Galerkin
finite element (CGFE) or the finite volume (FV)
method. The Navier-Stokes equations may be
solved with:

− An incompressible formulation (CGFE & FV)

− A weakly compressible formulation (FV)

− A fully compressible formulation (FV)

• K-epsilon turbulence model available, and k-
omega-SST to be released

• Basis for open-source CFD code OpenPronghorn,
released June 2025

Top: demonstration of the segregated solver on a T-

junction

Bottom: velocity and temperature results for Hi-STORM

spent fuel cask cooling

Bottom figure from “Development of a MOOSE thermal model of
the MPC-32 canister and HI-STORM overpack”, Okyay et al.

Solid Mechanics module

• The Solid Mechanics module is a library of simulation
tools that solve continuum mechanics problems. It
provides a simple approach for implementing even
advanced mechanics models:

− Plug-n-play design enables users to incorporate
the relevant physics for specific and varied
simulations

− Tensor implementation matches mathematical
theory

− Straight-forward procedure for adding new physics

• The solid mechanics system can be used to simulate
both linear and finite strain mechanics, including

− Elasticity and Cosserat elasticity

− Plasticity and micromechanics plasticity,

− Creep, and Damage due to cracking and property
degradation

Left: Thermo-mechanical stress analysis of a reactor

pressure vessel

Right: Simulation of a fractured ceramic nuclear fuel

pellet in the MOOSE solid mechanics module—the

contours of the damage index, with higher values

corresponding to more damage

Optimization module

• Leverages the TAO library for inverse optimization

Figure by Lynn

Munday (INL)

Electromagnetics module

• Transient and time-harmonic (i.e., single-
frequency, steady-state) simulation in 1D and
2D (3D is currently in development)

• Component-wise (scalar variables) and
vector field (vector variables) components
for the Helmholtz wave form of Maxwell's
Equations

• Complex field calculations

• First-order port boundary conditions (scalar
and vector forms)

• Verification cases with 2D waveguide and 1D
slab

From “The MOOSE electromagnetics module”, SoftwareX 2024

Simulated steady state radiation intensity pattern of a

vertically-oriented half-wave dipole antenna driven at 1 GHz.

Recent developments : MOOSE framework

• New discretization methods:

− Finite volumes

− Side variables

− Hybridized Discontinuous Galerkin

− Isogeometric Analysis (IGA)

• Mixed-simulation type restarts

• Arbitrary region meshing : 2D and 3D

• P-refinement

• Constructive Solid Geometry support

• Multiple linear and nonlinear systems

• Standardized Physics syntax

• Functional Mockup Interface (see end of presentation)

New discretization methods

• Finite volumes

− Cell-centered variables, with 1st and 2nd order interpolations

• Face variables

− SIDE_HIERARCHIC: Hierarchical polynomials on element
sides, discontinuous at vertices and edges

− Requires mesh elements with side nodes: EDGE2/3,
QUAD8/9, HEX27, TET14, PRISM20 and PYRAMID18

− Isometric Geometric Analysis (IGA)

− Solving on higher order geometries

• Hybridized discontinuous Galerkin (HDG)

− Higher order, conservative, and reduced system size
compared to regular DG

v(x) ∈ ∏(K1,K2)

Q(∂K1∩∂K2)
Face variables on

element side nodes

Reactor Pressure Vessel mesh (body-
fit mesh, extraction operator a
straight 1-to-1 mapping to NURBS

Figures from Roy Stogner

Arbitrary region meshing

• 2D triangle and 3D polyhedral meshing were added to MOOSE by leveraging
Poly2Tri and Netgen respectively

• Polygonal and polyhedral meshes now supported in libMesh

• Used in reactor & breeding blanket meshing

General surface

triangulation

Mesh of the

Lightbridge

accident-tolerant

fuel

A torispherical dome of a typical

containment meshed in MOOSE

Triply periodic minimal surfaces

(TPMS) meshed in MOOSE

Figures from Yinbin Miao and Patrck Behne

Hexagonal element

paving of a 2D square

More Efficient Solves: Multiple solver Systems in the
Same Input

• A monolithic Newton’s method can perform
poorly when an initial guess is far from the
solution

• This has been observed particularly in our TH area
when adding required coarse-mesh turbulence
models for advanced reactor types such as MSRs

• Some traditional Computational Fluid Dynamics
solver algorithms which segregate variables can
fare much better

• This has been leveraged by the TH area to create
a native MOOSE Semi-Implicit Method for
Pressure Linked Equations (SIMPLE)
implementation applicable to high Reynolds
number flows

Increased Accuracy from Polynomial
Basis Refinement (p-refinement)

• p-refinement can be used in
neutron transport to model neutron
attenuation in absorbers without
cusping effects

• p-refinement allows for exponential
rates of convergence in accuracy

• Along with p-refinement, MOOSE
added the capability to disable p-
refinement for select finite element
families

• Enables arbitrarily high order
discontinuous families and low
order Lagrange in the same
simulation

Control drums in a

micro-reactor.

Thermal flux

Base case (top)

H-adaptivity (middle)

P-adaptivity (bottom)

Core (below)

Constructive Solid Geometry (CSG) Support

This support aims to automate the geometry connection between MOOSE/MOOSE-

based apps and Monte Carlo (MC) codes for more reliable and efficient group

cross section generation, code-to-code comparisons, generation of reference

solutions, and multiphysics workflows.

CSG FEM

• This workflow builds CSG models
from the mesh generator data, not
the FEM output.

• The output is a generic definition
which can then be connected to
specific MC codes to translate it
to code-specific input.

Slide by K. Kiesling and

S. Kumar

Using AI to support research

• Keyword & examples search

• Provide recommendation on
complex topics such as
preconditioning systems

• Generate a template-type input
file from the physics description

• Fine tune the input file via an
interactive conversation

Related work:
1. B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat,

X. E. Tan, Y. Adi, J. Liu, T. Remez, J. Rapin and others,

"Code llama: Open foundation models for code," {arXiv

preprint arXiv:2308.12950, 2023.

2. J. A. Prenner and R. Robbes, "Automatic Program

Repair with OpenAI's Codex: Evaluating QuixBugs,"

arXiv preprint arXiv:2111.03922, 2021.

Research by Mengnan Li (INL)16

Agent MOOSE will support you

• A live agent babysits ongoing MOOSE
simulation

• Provide model state information,
simulation status, model results upon
user request

• Assistant multiphysics simulations with
model fidelity switch, correlation
selection, convergence issue,
spatial/time resolution changes

• Offer a versatile I/O to Python-based
AI/machine learning (ML) model

Agent MOOSE

Information Hub
• Model state

• Simulation status

• Results

• …

Toolbox
• Stochastic tools

• Reduced order

models

• High-fidelity

model

• PINN solver

• …

Modeler

Conversation

I/O

• In-house ML

model

• Control system

MOOSE Simulation

Research by Mengnan Li (INL)17

Graphics processing units (GPU) for distributed computing

CONNECT: Creation Of Next-generation Nuclear Energy Computational
Technology

• Meant to connect DOE Office of Science (DOE-SC) post-Exascale Computing
Project (ECP) with DOE-NE

• ECP tools best leverage some of the new large-scale computing clusters

• ECP tools which the CONNECT framework team explored:

− MFEM

− libCEED

− Kokkos

• MFEM backend has been added to MOOSE in March 2025 from UKAEA
developments

See: Electromagnetic Simulations in MOOSE using the MFEM Finite Element
Library 12/11/25, 9:55 AM

By Alexander Blair (UK Atomic Energy Authority)

18

https://conferences.iaea.org/event/412/contributions/38757/
https://conferences.iaea.org/event/412/contributions/38757/

Kokkos GPU assembly + solve preliminary performance

• Simplified microreactor heat conduction problem (2.2M elements with 1.98M DoFs)

• ∼150 CPU core equivalent for residual computation, and ∼100 CPU core equivalent for
Jacobian computation (effective values excluding shape function evaluation)

19

* AMD EPYC 9654 Single Core vs NVIDIA L4

Research by Namjae Choi and

Alexander Lindsay (INL)

Deploying MOOSE for nuclear fusion R&D

20

• Fusion Energy Sciences Advisory Committee (FESAC) report, 2020, “Powering the
Future, Fusion & Plasmas.”

“An essential component underpinning this effort is a strong theory and computation
program, including the advancement of multiscale, multiphysics theory and
modeling capabilities necessary to predict the complex interactions between
numerous plasma, material, and engineering processes.”

• Experimental data is rare and costly to obtain, making design particularly challenging.
Predictive computational frameworks need to be an integral part of an accelerated and
cost-effective design process by modeling fusion system performance in simulated
environments.

• There is a need to support the growth of fusion engineering.

FESAC, Powering the Future, Fusion & Plasmas, 2020 report

is well-suited for this challenge

Tritium Migration Analysis Program, version 8

Tritium Migration Analysis Program, Version 8 (TMAP8) GitHub repository: https://github.com/idaholab/TMAP8. Idaho Falls, Feb. 08, 2023

TMAP8
TMAP4 and TMAP7, although widely used, have significant limitations.

 TMAP8 enables high fidelity, multi-scale, 3D, multiphysics simulations of tritium transport.

 TMAP8 is open source, Nuclear Quality Assurance level 1 compliant, expands on TMAP4&7 V&V,

, offers user support and massively parallel capabilities.

Model

Development

and

V&V
3D pore microstructures
Using phase field modeling

capabilities, TMAP8 can study

the effect of real and

simulated pore

microstructure on

tritium transport.

High-fidelity simulations

in complex geometries
TMAP8 has been used to

model complex systems such

as a divertor monoblock

and a full 3D breeder

blanket section.

Fuel cycle TMAP8 support fuel cycle

calculations for rapid, full system analysis to

track tritium inventory – going

beyond TBR. These fuel cycle

models can be informed by

lower length-scale simulation

in a fully integrated manner.

Stochastic tools
The use of stochastic

tools supports model

calibration, experimental

analysis, and

quantification of

uncertainty.

Breeding Material

Multiplier Material

First wall

Software for Advanced Large-Scale Analysis of MAgnetic
confinement for Numerical Design, Engineering & Research

 (SALAMANDER)

SALAMANDER GitHub repository: https://github.com/idaholab/SALAMANDER. Idaho Falls, April. 30, 2025

SALAMANDER SALAMANDER couples key physics for blanket systems

 SALAMANDER enables high-fidelity, multi-scale, 3D, multiphysics simulations

 SALAMANDER is open source, Nuclear Quality Assurance level 1 compliant, offers user support

 and massively parallel capabilities.

Volumetric heating rate

from neutronics (J/m3s)

Temperature

(K)

Tritium concentration

(atomic fraction)

Von Mises Stress

(Pa)Tritium Transport

Heat

Conduction

Cardinal

Neutronics
Thermo

mechanics

Temperature

Temperature

Heating

Rate

Plasma

Unstructured adaptive mesh
refinement (AMR) with Monte

Carlo tallies.

Cardinal: Fusion Multiphysics with AMR
K. Sawatzky et al., “Adaptive Mesh Refinement

Applied to Unstructured Mesh Tallies in Cardinal”
Proceedings of ANS (2025)

OpenMC neutron-photon transport

MOOSE’s Adaptive Mesh Refinement system

Adapting tally

meshes

Tallies (nuclear

heating, dpa, ...)

The resolution of neutronics fields drives

many multiphysics design metrics for

fusion devices such as magnet heating,

material damage, and heating of high-heat-

flux components.

NRT-dpa in first wall

Helium-Cooled Lithium Lead

(HCLL) breeder blanket

Spatial resolution is refined in

high-gradient regions.

Helium-Cooled Pebble

Bed (HCPB) breeder

blanket

23

NEAMS Thermal-hydraulic Codes overview

• SAM
• Trustworthy and practical plant-level system

analysis tool for advanced reactors

• Advances in software environments and design,
numerical methods, and physical models thanks
to MOOSE.

• (Open)Pronghorn
• Engineering scale environment build on MOOSE

• Coarse CFD, subchannel and distributed
resistance

• Nek5000 / NekRS
• Open Source, Spectral element high-fidelity code

• Proven scalability beyond a million MPI ranks
(Gordon Bell prize). Now GPU-capable.

• Extensive code verification and validation

Flow around a twisted pin. (Nek)

See:

- ARC Divertor and Heat Exchanger

Thermal Hydraulic Modeling using the

Nek5000 CFD Code

12/9/25, 2:55 PM

- Fusion Energy System ARC System

Modeling using SAM

12/12/25, 11:45 AM

Pr. Lane Carasiks:

Releasing OpenPronghorn
• OpenPronghorn is a growing state-of-the-art computational fluid

dynamics (CFD) code supporting nuclear fission and fusion reactor
thermal-hydraulics engineering.

• As development progresses, OpenPronghorn will provide:

− Validation base: Incompressible and weakly compressible one-
and two-phase flows, with and without heat transfer, for nuclear
reactor applications—supporting future commercial-grade
dedications.

− Porous-media modeling: Models and correlations for coarse-
mesh analysis of advanced reactors.

− Turbulence models: One- and two-phase turbulence modeling,
including re-laminarization and buoyancy-driven corrections, to
support safety-case modeling for advanced fission and fusion
applications.

− Phase change & transport: Aerosol transport and
solidification/melting models to support design-basis accident
analyses.

− Species & electrokinetics: Species tracking and electrokinetic
modeling to support fuel-performance calculations in liquid-fuel
systems.

− Radiation heat transfer: High-order radiation heat-transfer
capabilities for fission and fusion systems.

DOE NEAMS; DOE ART; DOE AFC

Nuclear Reactor Technology | Reactor Systems and Heat Transport

Mauricio.TanoRetamales@inl.gov; Victor.CoppoLeite@inl.gov; David.Reger@inl.gov

Scientific Computing and Artificial Intelligence | Computational Frameworks

Peter.German@inl.gov; Ramiro.Freile@inl.gov; Guillaume.Giudicelli@inl.gov; Mengnan.Li@inl.gov; Logan.Harbour@inl.gov

High Fidelity CFD modeling of Accident

Tolerant Fuel irradiation experiment

using OpenPronghorn

Corrosion profiles in molten salt loop

using OpenPronghorn

Conjugate heat transfer in molten salt

reactor operation using OpenPronghorn

Two-phase flow in pump priming

showing flow stream vectors and

gaseous phase interface using

OpenPronghorn

National Reactor Innovation
Center Virtual Test Bed

1. Documentation
Detailed explanation of models

https://mooseframework.inl.gov/virtual_test_bed

2. GitHub Repo
Hosts the models

3. Integration
with Code
Development
Continuous testing of
models against codes
using CIVET

https://mooseframework.inl.gov/virtual_test_bed

Functional Mockup Interface

Modern engineering simulations involve complex workflow, coupling of different
modeling tools. To efficiently communicate between different software packages,
we need a standardized interface for information transfer.

MOOSE: A power open-source framework for solving complex multiphysics
engineering problems.

FMU/FMI Interface: A standardized tool-independent framework for the exchange
and co-simulation of dynamic models in various engineering applications.

Slides kindly provided by Dr. Mengnan Li

Functional Mock-up Interface (FMI)

What is FMI: An open, tool-independent standard for exchanging dynamic
simulation models. It is a popular industry tool

Applications: Automotive Manufacturer Co-Simulation, Aerospace Digital Twins &
virtual Electronic Control Unit, and Integrated Energy System Optimization &
Control

Purpose: Enables interoperability between different simulation software

Advantages: cross-platform, IP protection, simplified integration, open standard
evolution & industry adoption

Interface Types:

o Model Exchange (ME): The FMU provides equations and algorithms, and the simulation
environment provides the solver.

o Co-Simulation (CS): The FMU packages the model with its own numerical solver together.
A FMU simulation platform(e.g MathWorks’ Simulink, Open Modelica) controls the
simulation, coordinating the simulation by synchronizing with the FMU’s discrete time
steps and exchanging data at defined communication points

FMU Application Example

MOOSE FMU

Modelica controls

the simulation

Facility model

composed of a mix

of FMU & Modelica

models

Instrumental

provides input for

the facility model:

forming a digital

twin

Slide credit: Mengnan Li

Functional Mock-up Unit (FMU)

What is FMU: A ZIP archive defined by
the FMI standard, including an XML
model description file, compiled binaries
or source code to enable standardized
model exchange and co-simulation
across diverse simulation tools.

• Packaging:

− ModelDescription.xml: Define
interface, variables, parameters,
capabiilites

− Compiled Model Code:
implementing the standard FMI
functions using FMU API packages

• Other resources

MOOSEFMU.fmu

modelDescription.xml

binaries

src

documentation

build_linux.sh

build_win.bat

make file

Explore FMI Compatible Interface with MOOSE

1. Utilize MOOSE Web Server Control
• MOOSE provides a web server control interface.

• It allows modifications to the MOOSE input file using a Python

controller.

2. Develop the FMU Base Class (MOOSE2FMU.py)
• Define the fundamental structure for handling MOOSE-FMU

coupling.

• Handle MOOSE executions: Set up MOOSE web server control

• FMUBase: Provides abstract and concrete methods for FMU

interaction.

3. Build Customized MOOSE FMU based on user needs

(MOOSETest.py)
• Inherit the MOOSEFMUBase class

• Initialization: Set default parameters and register variables based

on problem needs.

• XML Representation: Define FMU model structure.

• Define the input/output: Specify all the variables and parameters

the user wants to expose to external codes.

• Step Function: Define simulation step execution.

[Controls/web_server]

type = WebServerControl

port = 12345

execute_on = 'INITIAL TIMESTEP_BEGIN'

[]

result = simulate_fmu(

"MooseTest.fmu",

start_time=t0,

stop_time=t1,

start_values={

'flag': 'TIMESTEP_END',

'moose_executable': '../../../moose_test-opt',

'moose_inputfile': 'fmu_diffusion.i',

'server_name': 'web_server',

'max_retries': 10},

input = input_data,

output = ['time','moose_time’, 'diffused']

)

time = result["time"]

dt = result["moose_time"]

diff_u = result["diffused"]

MOOSE input file:

MOOSE FMU example:

Challenges and Complexities

• Parallelism:

− FMI standard lacks direct support for parallel execution within an FMU. Managing
MOOSE’s internal MPI/OpenMP parallelism within FMU wrapper needs careful
design

• Dependencies & Portability:

− MOOSE relies on external libraries (e.g. libmesh, PETSc). These must be packaged
correctly within the FMU for portability across different OS/environments

• Coupling PDE Solvers:

− FMI primarily exchanges scalar/vector variables, while MOOSE contains many spatial
field variables. Strategies are needed to deal with those quantities (e.g. using
postprocessors, stochastic tool)

• Fidelity & Coupling Schemes:

− Supporting different model fidelities and enabling MultiApp adds complexities

Conclusions

• MOOSE is a fast-growing open-source framework for multiphysics and multi-
fidelity simulations, with users in a growing number of fields

− ~500 user-developers on slack

− ~800 PRs a year

• Applications developed by the community leverage the physics modules to
quickly set up simulations for targeted problems

• Fusion device engineering using MOOSE tools is pursued by several institutions

• Support for FMI standard 2.0 has been developed and to be merged in 2026

• Staying in touch:

− MOOSE Newsletter on website

− Github Discussions for all user questions

− moosedevelopers slack for developers

Other presentations using MOOSE tools

An Integrated Multi-physics Platform for the LIBRTI Facility 12/9/25, 11:00 AM

Helen Brooks (UKAEA)

Divertor Monoblock Multiphysics Analysis Using the SALAMANDER Code 12/9/25, 4:40 PM

Lane Carasik (Virginia Commonwealth University)

Bringing together integrated simulation, surrogates, and data to support digital twins for fusion engineering
 12/10/25, 9:55 AM

Casey Icenhour (Idaho National Laboratory)

Electromagnetic Simulations in MOOSE using the MFEM Finite Element Library 12/11/25, 9:55 AM

By Alexander Blair (UK Atomic Energy Authority)

Software for Advanced Large-scale Analysis of MAgnetic confinement for Numerical Design, Engineering &
Research (SALAMANDER) 12/12/25, 9:30 AM

Pierre-Clément Simon (Idaho National Laboratory)

Fusion Energy System ARC System Modeling using SAM 12/12/25, 11:45 AM

Lane Carasik (Virginia Commonwealth University)

https://conferences.iaea.org/event/412/contributions/38429/
https://conferences.iaea.org/event/412/contributions/38429/
https://conferences.iaea.org/event/412/contributions/38429/
https://conferences.iaea.org/event/412/contributions/38166/
https://conferences.iaea.org/event/412/contributions/38169/
https://conferences.iaea.org/event/412/contributions/38757/
https://conferences.iaea.org/event/412/contributions/38758/
https://conferences.iaea.org/event/412/contributions/38758/
https://conferences.iaea.org/event/412/contributions/38758/
https://conferences.iaea.org/event/412/contributions/38758/
https://conferences.iaea.org/event/412/contributions/38156/

Battelle Energy Alliance manages INL for the U.S. Department of Energy’s Office of Nuclear Energy.

INL is the nation’s center for nuclear energy research and development, and also performs research

in each of DOE’s strategic goal areas: energy, national security, science and the environment.

Software Quality Assurance

• INL is audited yearly by ASME on the compliance of its quality assurance program to
NQA-1

• MOOSE and all the applications developed at INL follows SQA practices defined by
the INL SQA Plan 4005

• In practice for MOOSE:

− Independent code reviews

− Automated software quality documentation generation

− Continuous integration achieved through:

• An extensive test suite involving >50 configurations and 10k tests per config.

• A dedicated testing cluster (3,500 cores)

• Continuous integration services offered to other application teams

− INL is not a qualified supplier, so Commercial Grade Dedication is performed by
the end user

	Slide 1
	Slide 2: MOOSE : Multiphysics Object Oriented Simulation Environment
	Slide 3: Ecosystem of the MOOSE-based applications
	Slide 4: MOOSE Modules
	Slide 5: Navier Stokes module
	Slide 6: Solid Mechanics module
	Slide 8: Optimization module
	Slide 9: Electromagnetics module
	Slide 10: Recent developments : MOOSE framework
	Slide 11: New discretization methods
	Slide 12: Arbitrary region meshing
	Slide 13: More Efficient Solves: Multiple solver Systems in the Same Input
	Slide 14: Increased Accuracy from Polynomial Basis Refinement (p-refinement)
	Slide 15: Constructive Solid Geometry (CSG) Support
	Slide 16: Using AI to support research
	Slide 17: Agent MOOSE will support you
	Slide 18: Graphics processing units (GPU) for distributed computing CONNECT: Creation Of Next-generation Nuclear Energy Computational Technology
	Slide 19: Kokkos GPU assembly + solve preliminary performance
	Slide 20: Deploying MOOSE for nuclear fusion R&D
	Slide 21: Tritium Migration Analysis Program, version 8
	Slide 22: Software for Advanced Large-Scale Analysis of MAgnetic confinement for Numerical Design, Engineering & Research (SALAMANDER)
	Slide 23: Cardinal: Fusion Multiphysics with AMR
	Slide 24
	Slide 25: Releasing OpenPronghorn
	Slide 26: National Reactor Innovation Center Virtual Test Bed
	Slide 27: Functional Mockup Interface
	Slide 28: Functional Mock-up Interface (FMI)
	Slide 29: FMU Application Example
	Slide 30: Functional Mock-up Unit (FMU)
	Slide 31: Explore FMI Compatible Interface with MOOSE
	Slide 32: Challenges and Complexities
	Slide 33: Conclusions
	Slide 34: Other presentations using MOOSE tools
	Slide 35
	Slide 36: Software Quality Assurance

