REIMS - Riemann Explicit Implicit Magnet
Simulator, new tool for calculating
superconductor performance

Jacek Kosek!, Damien Furfaro?
Andrey Ovcharov', Tyge Schioler?

@|REIMS

Riemann Explicit Implicit Magnet Simulator

' — ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France
2—\DAES SA, Av. Des Grandes-Communes 8, 1213 Petit-Lancy, Switzerland
AN

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

IAEA — Workshop on Digital Engineering for Fusion Energy Research, 11 Dec 2025

IDM UID: XXXXXX Page 1
© 2025, ITER Organization



REIMS as part of ITER Plant Simulator
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Multi-physics

* Thermo-hydraulic calculations
— Direct helium state calculation (modified Benedict Webb Rubin)
— Easy to override correlation functions

« Heat transfer calculation
— Fluid 1D (+some parallel channel exchange)
— Solid 0D, 1D, 2D

« Superconductor calculations
— Nb3Sn, NbTi
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REIMS - inputs and outputs
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REIMS — how to prepare model

O R T AT AT AT AR
ﬁ - type: strand .

A

Gmsh id: strand_3L_P1
nodes: 193
length: 147.66
initial: {t: 4.3}
stabilizer: {name: Copper, ‘
superconductor: {name: Nb3Sn_JAS, area:
O(C?Q R E | M S channel_link: yes
(:j[:7 field:

Riemann Explicit Implicit Magnet Simulator time: {h5 : Bfield/B CS3L 1. h5, data:
X: {h5: Bfield/B_CS3L_1.h5, data:

value: {h5: Bfield/B_CS3L_1.h5, data:
current:
time: [0, 0.1, 1, 10, 100]

value: [0, 10e3, 5e3, 1le3, 0]

N ”l Para View field gradient: @

flux: 0
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Example of fluid loop
B s

R_correction: no

write_results:
file: reims_output.h5

components:
- type: channel
id: pipe
nodes: [0.1, 0.2, 0.3, 0.4, 0.3, 0.2, 0.1]
diameter: 12e-3
a-- initial: {p: 4e4, t: 4.5}
- type: pump
mo: le-3
? link:
O - id: pipe
node: out

- id: pipe
node: in
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Modelling example
CICC — cable in conduit conductor S
8

Model of helium inlet inside panckake:
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https://www.google.com/imgres?q=cicc%20iter&imgurl=https%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2Fd%2Fd0%2FITER_Central_Solenoid_CICC_%252834860816181%2529.jpg%2F1280px-ITER_Central_Solenoid_CICC_%252834860816181%2529.jpg&imgrefurl=https%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FFile%3AITER_Central_Solenoid_CICC_(34860816181).jpg&docid=U4yOrj_lI1HAlM&tbnid=C4CHYRIrnRYC3M&vet=12ahUKEwjju_3V2tuIAxUT_rsIHVPwIzkQM3oECG4QAA..i&w=1280&h=853&hcb=2&ved=2ahUKEwjju_3V2tuIAxUT_rsIHVPwIzkQM3oECG4QAA

REIMS in ITER

* Central Solenoid (CS) —

— Normal operation (margin estimation)
— Cooldown analyses

« Toroidal Field Coil (TF) and Magnet
Structures (STR)

— Normal operation (margin estimation)
— Cooldown analyses
— Quench analysis — ongoing validation

« Poloidal Field (PF) and Correction
Coils (CC)

— Normal operation (margin estimation)
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Application of a Short Plasma Pulse Scenario Along the Pancakes
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Minimum temperature margin for TF coils
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TF cool down scenario

dT (Qutlet Temperature - Inlet Temperature) - in K

dT (Qutlet Temperature - Inlet Temperature) - in K

No thermal coupling TF WP / TF casing
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CSM1 cool down simulation vs Experimental data
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Summary

« References

— A new fast and robust thermo-hydraulic code for ITER superconducting magnet simulation, Damien
Furfaro, Jacek Kosek, Andrey Ovcharov, Tyge Schioler, Rossella Rotella, Tim Luce. Cryogenics Volume 144,
December 2024, 103978

— Thermal structural analyses during cool down of the ITER toroidal field coil in the magnet cold test
bench, Valerio Tomarchio, et all, Fusion Engineering and Design, Volume 216, July 2025, 115017

* Open-source release expected early 2026

 Numeric methods:

— Riemann with Godunov scheme (implicit and explicit) for
compressible fluid

— Most of derivatives calculated analytically
— Monolithic simulation — no co-simulation
— Single sparse linear set of equations solve by MKL Pardiso
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Thank you
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Backup

 Verification: heat transfer
 Validation: junction wave propagation
« Example of components
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2D Heat Diffusion — Validation
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Introduction of a numerical method for junction treatment

DP (kPa)
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Example of hydraulic components

YooY Y Yy Y
NI

) - TS=. Helium channel

= A A A

mwélw»%}% «/s Junction

Pump and compressor

Mass flowrate and pressure imposed boundary

Energy and mass exchange along the channel
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Example of thermal components

_k])_ \,rj ‘\rj \T) \r) | .\\‘ \
\1 ~ Solid component (metal chunk)
{

) ) ) ) )

4. 2D mesh (connection require some work)

227 4274%2;74? 2 solid connection + optional resistance

Tﬁiﬁ?i‘%f} Fluid €- solid thermal connection
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