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Motivation & Research Background

▪ Future fusion device (e.g., ARC ) designs require large-scale parameter optimizations (e.g., 

disruption mitigation optimization)

[1] E.J. Strait et al., Nucl. Fusion 59 112012 (2019)
[2] C.F. Clauser et. al., Nucl. Fusion, 61, 116003 (2021) 

Different pellet injection 
velocities (three colors) lead to 
varying radiated power (𝑷𝒓𝒂𝒅) 
and the plasma electron 
central temperature (𝑻𝒆,𝒄) [2]. 

JET runaway electrons damage.
https://www.iter.org/newsline/-/2234

Unmitigated disruptions in ITER is expected to 
become of the order 1 in 104 discharges [1].
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Motivation & Research Background

▪ High-fidelity nonlinear MHD simulations (e.g., M3D-C1) are essential but computationally 

expensive

▪ E.g., one 3D M3D-C1 simulation with 8 toroidal planes (Data provided by Rishabh Datta)

▪ One time step ~ 53s, 20~30k time steps for several milliseconds 

▪ On Perlmutter with 8 nodes for ~ 2 weeks

▪ Neural network-based surrogate models offer a potential approach to accelerate this 

optimization
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Outlines

▪ Introduction of Operator Learning

▪ Generalization Methods of Neural Operator Surrogates

• Parameter generalization

• Geometry generalization 

• Demonstration

▪ M3D-C1 Solver Acceleration
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Neural Operator & Operator Learning

Neural Operator: Neural networks for PDE surrogate modeling

PDE in operator form: 𝒪 𝒑 𝑢 𝒙 = 𝑆 𝒙

Solution of the field function:

𝑢 𝒙 = 𝒪−1 𝒑 𝑆 𝒙

𝑛𝑒 𝑇𝑒∇ ⋅ 𝒗 + 𝒗 ⋅ ∇𝑇𝑒 + 𝜎𝑒𝑇𝑒

= 𝛾 − 1 ሺ
ሻ

∇ ⋅ 𝜅⊥∇𝑇𝑒 + ∇ ⋅ 𝜅∥𝒃𝒃 ⋅ ∇𝑇𝑒

+ 𝜂𝐽2 + 𝑄𝑟𝑎𝑑 + 𝑄…

Steady state electron temperature equation:

Operator form:

𝒪 𝑣, 𝜎𝑒 , 𝜅⊥, 𝜅∥ 𝑇𝑒 𝑟, 𝑧 = 𝑆 𝑟, 𝑧
Solution Operator 

Computational expensive matrix inverse

Neural operator (N.O.) as a surrogate of the solution operator

𝑢𝑁.𝑂. 𝒙 = 𝓞𝑵.𝑶.
−𝟏 𝒑 𝑆 𝒙 ≈ 𝒪−1 𝒑 𝑆 𝒙

Take any source and give predicted field function
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Existing Issues of Neural Operator Surrogates

(1) Data acquisition

Comprehensive parameter scans are infeasible

(2) Cross-machine generalization

Evolving device designs make it impossible to obtain sufficient data

(3) Accuracy degradation

Extrapolation performance remains low fidelity

(4) Limited interpretability

Safety-critical applications require transparent and explainable models

𝑢𝑁.𝑂. 𝒙 = 𝓞𝑵.𝑶.
−𝟏 𝒑 𝑆 𝒙
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Parameter Generalization – Equation Recast

Train a canonical neural operator with 𝒑∗  

𝒪 𝒑∗ 𝑢 𝒙 = 𝑆 𝒙 𝒪𝑁.𝑂.
−1 𝒑∗

𝑇𝑒∇ ⋅ 𝒗∗ + 𝒗∗ ⋅ ∇𝑇𝑒 −
𝛾 − 1 𝜅⊥

∗

𝑛𝑒
∗ ∇2𝑇𝑒 = 𝑆 ∇ ⋅ 𝒗∗ + 𝒗∗ ⋅ ∇ −

𝛾 − 1 𝜅⊥
∗

𝑛𝑒
∗ ∇2 𝑇𝑒 = 𝑆

𝒪 𝒑∗
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Parameter Generalization – Equation Recast

Given 𝒑′, decompose the operator: 

Train a canonical neural operator with 𝒑∗  

𝒪 𝒑∗ 𝑢 𝒙 = 𝑆 𝒙 𝒪𝑁.𝑂.
−1 𝒑∗

Residual operator: 𝛿𝒪 𝛿𝒑

𝒪 𝒑′ 𝑢 𝒙 = 𝒪 𝒑′ − 𝒪 𝒑∗ + 𝒪 𝒑∗ 𝑢 𝒙 = 𝑆ሺ𝒙ሻ

𝑇𝑒∇ ⋅ 𝒗∗ + 𝒗∗ ⋅ ∇𝑇𝑒 −
𝛾 − 1 𝜅⊥

∗

𝑛𝑒
∗ ∇2𝑇𝑒 = 𝑆 𝑇𝑒∇ ⋅ 𝒗′ + 𝒗′ ⋅ ∇𝑇𝑒 −

𝛾 − 1 𝜅⊥
′

𝑛𝑒
′ ∇2𝑇𝑒 = 𝑆

𝑇𝑒 ∇ ⋅ 𝒗′ − ∇ ⋅ 𝒗∗ + 𝒗′ ⋅ ∇𝑇𝑒 − 𝒗∗ ⋅ ∇𝑇𝑒 −
𝛾 − 1 𝜅⊥

′

𝑛𝑒
′ ∇2𝑇𝑒 −

𝛾 − 1 𝜅⊥
∗

𝑛𝑒
∗ ∇2𝑇𝑒

𝛿𝒪 𝛿𝒑 𝑢 𝒙
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Parameter Generalization – Equation Recast

Given 𝒑′, decompose the operator: 

𝑢 𝒙; 𝒑′ = 𝒪𝑁.𝑂.
−1 𝒑∗ 𝑆 𝒙 − 𝛿𝒪 𝛿𝒑 𝑢 𝒙

Absorb parameter variance into source term
Form an iterative scheme using canonical N.O.

The canonical N.O. is generalized to all parameters with preserved physics

Train a canonical neural operator with 𝒑∗  

𝒪 𝒑∗ 𝑢 𝒙 = 𝑆 𝒙 𝒪𝑁.𝑂.
−1 𝒑∗

Residual operator: 𝛿𝒪 𝛿𝒑

𝒪 𝒑′ 𝑢 𝒙 = 𝒪 𝒑′ − 𝒪 𝒑∗ + 𝒪 𝒑∗ 𝑢 𝒙 = 𝑆ሺ𝒙ሻ

Equation Recast: 𝒪 𝒑∗ 𝑢ሺ𝒙ሻ = 𝑆 𝒙 − 𝛿𝒪 𝛿𝒑 𝑢 𝒙
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Cross Machine Generalization – Domain Unification

Irregular 
domain

Regular 
domain

Conformal mapping

Known 
Solution

Real 
Solution

Inverse mapping

Solving a PDE analytically:
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Cross Machine Generalization – Domain Unification

Re(z)

Im(z)

C-Mod 2D Mesh (Cross Section)

Mesh
Computational 

DomainPhysics Space

Cross machine geometry unification via Harmonic Mapping:

Harmonic Mapping is uniquely determined by the geometry 

𝑓 ቚ
𝜕Ω

= 𝑒𝑖𝜃

∆𝑢 = ∆𝑣 = 0

Harmonic functions:

Boundary:
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Cross Machine Generalization – Domain Unification

Separate the geometry analytically, achieving geometry-agnostic training

PDE is defined in the computational domain, same PDE for all machines (+ Jacobians)

Computational 
DomainPhysics Space

Cross machine geometry unification via Harmonic Mapping:

N.O. 
Surrogate

Computational 
Domain Physics Space
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Cross Machine Generalization – Domain Unification

Re(z)

Im(z)

Re(z)

Im(z)

Re(z)

Im(z)

C-Mod SPARC ARC_V2A

Physics Space
Computational 

Domain

Computational 
Domain

Computational 
Domain Physics SpacePhysics Space

Mappings and inverse mapping are precalculated
Different Jacobians can be precalculated and absorbed using Equation Recast
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Demo – Fourier Neural Operator (FNO) based Surrogate

Simplified thermal quenching problem (single energy equation)

𝑛𝑒

𝜕𝑇𝑒

𝜕𝑡
+ 𝑇𝑒∇ ⋅ 𝒗 + 𝒗 ⋅ ∇𝑇𝑒 + 𝜎𝑒𝑇𝑒

= 𝛾 − 1 ∇ ⋅ 𝜅⊥∇𝑇𝑒 + ∇ ⋅ 𝜅∥𝒃𝒃 ⋅ ∇𝑇𝑒 + 𝜂𝐽2 + 𝑄𝑟𝑎𝑑 + 𝑄𝑒𝑥𝑡

𝑇𝑒
𝑖+1 =

1

𝛿𝑡
−

𝛾 − 1

𝑛𝑒
𝜅⊥

∗ ∇2

−1
𝛾 − 1

𝑛𝑒
𝜂𝐽2 + 𝑄𝑒𝑥𝑡 +

1

𝛿𝑡
𝑇𝑒

𝑖 +
𝛾 − 1

𝑛𝑒
𝜅⊥

𝑡𝑒𝑠𝑡 − 𝜅⊥
∗ ∇2𝑇𝑒

𝑖+1

Neural Operator Additional SourceI. C.

Other equation evolutions are disabled in M3D-C1 simulations
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Demo – Fourier Neural Operator (FNO) based Surrogate

𝑆 𝑟, 𝑧

=
𝛾 − 1

𝑛𝑒
𝜂𝐽2 + 𝑄𝑒𝑥𝑡 +

1

𝛿𝑡
𝑇𝑒

𝑖 +
𝛾 − 1

𝑛𝑒
𝜅⊥

𝑡𝑒𝑠𝑡 − 𝜅⊥
∗ ∇2𝑇𝑒

𝑖+1 𝑢 𝑟, 𝑧 = 𝑇𝑒
𝑖+1ሺ𝑟, 𝑧ሻ

[1] Z. Li, et al., Fourier Neural Operator for Parametric Partial Differential Equations, International Conference on Learning Representations, 2021.

Fourier neural operator [1]
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Demo – Fourier Neural Operator (FNO) based Surrogate

C-MOD Mesh
256 Gaussian sources

Random Var
Random Center

256 Sources × 5 time steps

𝑁𝑡𝑟𝑎𝑖𝑛 = 256 × 5 = 1280 

2 Nodes with 8 × A100 GPUs (MIT Engaging Cluster)

𝑇𝑡𝑟𝑎𝑖𝑛 ~ 2.2 ℎ𝑜𝑢𝑟𝑠 

𝜿⊥
∗ = 𝟏 × 𝟏𝟎−𝟑
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Demo – Parameter Generalization 𝜅⊥
𝑡𝑒𝑠𝑡 = 5 × 10−4

Neural Operator Infer_time = 14ms

M3D-C1 Run_time = 2.4s  



𝑢𝑡 𝒙
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Fidelity Preservation – Preconditioner & Hybrid Solver
Hybrid solver - use neural operator surrogate as Preconditioner:

• Interpretable solutions
• Preserve full fidelity
• Reduce iterations
• Jump time steps

M3D-C1 
Solver

M3D-C1 
Solver

N.O. 
Surrogate

𝑢𝑡 𝒙 , 𝑆𝑡ሺ𝒙ሻ
Improved “initial guess”

𝑢𝑡+1 𝒙

Only predict “next” time step

෤𝑢𝑡+1 𝒙

Accelerate M3D-C1 simulations
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Conclusions and Discussions

This is work is supported by Commonwealth Fusion System.

chengq@psfc.mit.edu 

MIT Disruption Group

▪ The neural operator surrogate successfully predicts temperature evolution across different 
parameters

▪ Its inference time is negligible compared to high-fidelity MHD solvers

On-going work:
▪ Extending to complete MHD equations and more complex plasma events
▪ Coupling the neural operator surrogate into the M3D-C1 solver

Potential of neural operator surrogates:
▪ Accelerate high-fidelity simulations
▪ Enable rapid prototyping for new system designs
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