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Motivation & Research Background

= Future fusion device (e.g., ARC™) designs require large-scale parameter optimizations (e.g.,

disruption mitigation optimization)

JET runaway electrons damage.
https://www.iter.org/newsline/-/2234

Unmitigated disruptions in ITER is expected to
become of the order 1 in 10% discharges [1].
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and the plasma electron
central temperature (T, ;) [2].
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[1] E.J. Strait et al., Nucl. Fusion 59 112012 (2019)
[2] C.F. Clauser et. al., Nucl. Fusion, 61, 116003 (2021)
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Motivation & Research Background

*= High-fidelity nonlinear MHD simulations (e.g., M3D-C1) are essential but computationally
expensive
= E.g., one 3D M3D-C1 simulation with 8 toroidal planes (Data provided by Rishabh Datta)
" One time step ~ 53s, 20~30k time steps for several milliseconds
" On Perlmutter with 8 nodes for ~ 2 weeks
= Neural network-based surrogate models offer a potential approach to accelerate this

optimization
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Outlines

" |[ntroduction of Operator Learning

" Generalization Methods of Neural Operator Surrogates
* Parameter generalization
* Geometry generalization
* Demonstration

= M3D-C1 Solver Acceleration
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Neural Operator & Operator Learning

Neural Operator: Neural networks for PDE surrogate modeling

PDE in operator form: O(p)[u(x)] = S(x) Steady state electron temperature equation:
' n,(T.V-v+v-VT.)+0,.T,
| | | =@y -1k, VT,)+V-(xbb-VT,)
Solution of the field function: + 124 Qrgg + Q)

u(x) = 0~ (P)[S(x)]

Solution Operator
Computational expensive matrix inverse

Operator form:
O, .,k , k)IT.(r,2)] =S(r, 2)

Neural operator (N.O.) as a surrogate of the solution operator

Uy.0.(x) = Oy M[S)] = 07 (P)[S(x)]

Take any source and give predicted field function
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Existing Issues of Neural Operator Surrogates

Un.0.(%) = Oy, (P)[S(x)]

(1) Data acquisition
Comprehensive parameter scans are infeasible
(2) Cross-machine generalization
Evolving device designs make it impossible to obtain sufficient data
(3) Accuracy degradation
Extrapolation performance remains low fidelity
(4) Limited interpretability

Safety-critical applications require transparent and explainable models
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Parameter Generalization — Equation Recast

Train a canonical neural operator with p*

O(PHu)] =S(x) wp Oy, (p*)

(y — Dk}
ne

— 1k
TeV-v*+v*-VTe—(yn)lV2T—S (V-v*+v*-V—
e

W>n=5

O(p*)
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Parameter Generalization — Equation Recast

Train a canonical neural operator with p*

O(PHu)] =S(x) wp Oy, (p*)

Given p’, decompose the operator:
0@ [u@)] = (0@) - 0@") + 0(P))[ux)] = S(x)
Residual operator: 60 (6p)

— Dk — Dk}
TeV-v*+v*-VTe—(y *) =V2T, = § TeV-v’+v’-VTe—(y ,) = V2T, =
Ne Ne
— Dk’ — Dk}
Te(V-v’—V-v*)+(v’-VTe—v*-VTe)—((y ,) lVZTe—(y *) lVZTe)
ne ne
60(6p)[u(x)]
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Parameter Generalization — Equation Recast

Train a canonical neural operator with p*

O(PHu)] =S(x) wp Oy, (p*)

Given p’, decompose the operator:
0@ [u@)] = (0@) - 0@") + 0(P))[ux)] = S(x)
Residual operator: 60 (6p)

Equation Recast: O(p*) [u(x)] = S(x) — 60(6p)[u(x)]
mp u(xp) =0y, @)|SK) - 60(6p)[u)]]

Absorb parameter variance into source term
Form an iterative scheme using canonical N.O.

The canonical N.O. is generalized to all parameters with preserved physics
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Cross Machine Generalization — Domain Unification

Regular
domain

Known
Solution

Solving a PDE analytically:

Irregular
domain

Conformal mapping

Inverse mapping

Real
Solution
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Cross Machine Generalization — Domain Unification

Cross machine geometry unification via Harmonic Mapping:
C-Mod 2D Mesh (Cross Section)
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Harmonic Mapping is uniquely determined by the geometry
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Cross Machine Generalization — Domain Unification

Cross machine geometry unification via Harmonic Mapping:

Physics Space

Computational
Domain

»

N.O.
Surrogate
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Separate the geometry analytically, achieving geometry-agnostic training

PDE is defined in the computational domain, same PDE for all machines (+ Jacobians)
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Cross Machine Generalization — Domain Unification

C-Mod SPARC ARC_V2A
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Mappings and inverse mapping are precalculated
Different Jacobians can be precalculated and absorbed using Equation Recast
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Demo - Fourier Neural Operator (FNO) based Surrogate

Simplified thermal quenching problem (single energy equation)
T,
ne (== + IV +uAT, | Lot
= =D (c,VTe) + V- (gbbVTe) +nJ? £ Qe+ Qext)

-1

. 1 -1 . y —1 1 . y—1 . .

7= ( — Klv2> [ —— (1% + Qexe) + 5T+ (e = kDVTSH
e e e

Neural Operator . C. Additional Source

Other equation evolutions are disabled in M3D-C1 simulations
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Demo - Fourier Neural Operator (FNO) based Surrogate

S(r,z)
Y — 1 1 . Y — 1 . : _ mpi+1
= )% + Qoxe) + —=TE +—— (it — K V2T u(r,z) =T.""(r,2)
N, ot Ne
S(J_r1) Fourier Fourier u(;.rl)
: S Layer 1 e Layer N ' Proj :
S(xn) | . |~ | u(xy)
I-rh"':: _________________________________________________________ .n.n.—.-:
i —— FFT |— Linear — IFFT I
1 ~ |
S |
i ;
i » Linear |
| |

Fourier neural operator [1]

[1] Z. Li, et al., Fourier Neural Operator for Parametric Partial Differential Equations, International Conference on Learning Representations, 2021.
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Demo - Fourier Neural Operator (FNO) based Surrogate
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256 Sources X 5 time steps K, =1x1073
Nipgin = 256 X 5 = 1280

2 Nodes with 8 X A100 GPUs (MIT Engaging Cluster)

Tirqin ~ 2.2 hours
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Demo — Parameter Generalization Klest = 5 x 10~
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Neural Operator Infer_time = 14ms

M3D-C1 Run_time = 2.4s i
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Fidelity Preservation — Preconditioner & Hybrid Solver

Hybrid solver - use neural operator surrogate as Preconditioner:

t
Interpretable solutions — M3D-C1 .71_(_{%____. M3D-C1 | | utt1(x)

* Preserve full fidelity
Reduce iterations
* Jump time steps

¥

Solver

ﬁt+1(x)
Improved “initial guess”

Solver

ut(x),St(x
) N.O.
Surrogate

Accelerate M3D-C1 simulations Only predict “next” time step
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Conclusions and Discussions

= The neural operator surrogate successfully predicts temperature evolution across different
parameters
" [ts inference time is negligible compared to high-fidelity MHD solvers

On-going work:
= Extending to complete MHD equations and more complex plasma events
= Coupling the neural operator surrogate into the M3D-C1 solver

Potential of neural operator surrogates:
= Accelerate high-fidelity simulations

. . , chengq@psfc.mit.edu
= Enable rapid prototyping for new system designs

MIT Disruption Group
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