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Motivation — Fusion Energy Systems

» For fusion pilot plant progress, development of enabling technology
surrounding the blanket, inner and outer fuel cycles is a priority

Tritium fuel cycle of a ARC-class fusion power plant
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What are fusion breeder blankets (LIB)?
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1S. Meschini et al Nucl. Fusion, 10.1088/1741-4326/acf3fc
2A.Q. Kuang et Al., Fus. Eng. Des. https://doi.org/10.1016/j.fusengdes.2018.09.007
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What are fusion breeder blankets (LIB)?

Heat Exchanger

Blanket tank

For Component level studles to *accurately™ occur, we mjust Eldentlfy
relevant system operating conditions resulting in localized thermal-fluid
regimes.

Ex(s): Flow regime in blanket and first wall, thermal-fluids influences of
tritium extractors, etc
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What is a top-down to bottom-up design cycle?

Design

Tritium fuel cycle of a ARC-class fusion power plant
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Methodology — System Modeling of FES

Tritium fuel cycle of a ARC-class fusion power plant

- Few options exist for fusion

system modeling to =
understand the behavior of

inner and outer fuel cycles.

- These include such as System
Analysis Module (SAM),
MOOSE THM, ORNL'’s
Modelica TRANSFORM

library, RELAP5-3D, etc. [ P —
. Inner fuel cycle (IFC) e

ARC Inner and Outer Fuel Cycle Schematic’

. Tritium ion fluX  weveses Ea"‘ may or "‘a\é_"m
Tritium flow e present, pending

Neutron flux "EEEEEE technology choices

'S. Meschini et al Nucl. Fusion, 10.1088/1741-4326/acf3fc |




Methodology — System Modeling using SAM

« We use System Analysis I
Module (SAM)' developed it '“",‘/m/.‘s'*x
in the MOOSE? framework il; LR
created originally for B oo
advanced non-light water I
reactor design. Lyl

* This includes liquid metal
(Sodium, Lead, Lead
Bismuth) and high

temperature & gas

(H eliu m) systems. (a) SAM model with 61 core channels (b) Coupled SAM and CFD code
simulation

Examples of System Modeling for Reactor
Systems using SAM involving Sodium’

'R. Hu et al., 2021; https://doi.org/10.2172/1781819 7
2 https://mooseframework.inl.gov/
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Methodology — System Modeling using SAM

« We use System Analysis I
Module (SAM)' developed it '“",‘/m/.‘s'*x
in the MOOSE? framework il; LR
created originally for B oo
advanced non-light water I
reactor design. Lyl

* This includes liquid metal
(Sodium, Lead, Lead
Bismuth) and high
temperature & gas

(HG”U m) systems. . Kinda (a) SAM model with 61 core channels (b) Coupled SAM and CFD code
. simulation
like DCLL, WCLL, HCPB, :
Examples of System Modeling for Reactor
elc. Systems using SAM involving Sodium'

'R. Hu et al., 2021; https://doi.org/10.2172/1781819 8
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Methodology — System Modeling using SAM

« SAM was later extended for molten salt
(FLiBe) based nuclear energy systems
including the Fluoride salt cooled High
temperature Reactor (FHR)
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T. Fei et al.,” MSRE TRANSIENT BENCHMARKS USING SAM”, 10.1051/epjconf/202124707008 9
2A. Leandro et al., 2018, 10.1016/j.anucene.2018.10.060




Methodology — System Modeling using SAM

« SAM was later extended for molten salt
(FLiBe) based nuclear energy systems
including the Fluoride salt cooled High
temperature Reactor (FHR)

Heat ™ R

= Turns out ... this is as close as possible to
a Liquid Immersion Blanket using FLiBe ...
talk about cross-cutting!
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2A. Leandro et al., 2018, 10.1016/j.anucene.2018.10.060




Methodology — Computational Domain of LIB Outer
Fuel Cycle System
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Simplified Outer Fuel Cycle System
used in this Study'2

For coolants, FLiBe salt was used in the heat transport loop while LiNaK (carbonate) salt> was modeled

using the equations of state implemented in SAM.

The structural materials are modeled as V alloy* or Inconel 7184 for the thermal physical properties.

T. Franklin, et al., 2025. 10.1080/15361055.2025.2503679
2T. Franklin et al., 2025. In Draft

3A. Cabral et al. 2022. Int. J. Energy Res. 46 3554-3571
4B. Bocci et al., 2020. Fusion Eng. Des. 154 111539
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Methodology — Computational Domain of LIB Outer
Fuel Cycle System
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For coolants, FLiBe salt was used in the heat transport loop while LiNaK (carbonate) salt> was modeled
using the equations of state implemented in SAM.
The structural materials are modeled as V alloy* or Inconel 7184 for the thermal physical properties.

T. Franklin, et al., 2025. 10.1080/15361055.2025.2503679
2T. Franklin et al., 2025. In Draft

3A. Cabral et al. 2022. Int. J. Energy Res. 46 3554-3571
4B. Bocci et al., 2020. Fusion Eng. Des. 154 111539
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Results — Overview of Study

- (Latent Heating) How much “latent” heating is needed to keep the
molten salt at sufficiently high temperatures to avoid freezing?

- (Start-Up) Start-up for the outer fuel cycle loop from a “standby”
condition.

- (Shutdown) A nominal shutdown scenario for the outer fuel cycle loop
to a "standby” condition.

- (Unprotected Pump Trip) An initial severe transient where primary
pump(s) trips or fails without signals to stop fusion core operations in
the outer fuel cycle to understand component level temperature
response (i.e. forced to natural circulation).

T. Franklin, et al., 2025. 10.1080/15361055.2025.2503679
2T, Franklin et al., 2025. In Draft
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Results — Latent Heating Transient
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Results — Latent Heating Transient
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Results — Start-up Transient
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Results — Start-up Transient
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Results — Shutdown Transient
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Results — Shutdown Transient
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Results — Protected Primary Pump Trip
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Results — Unprotected Primary Pump Trip
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Results — Unprotected Primary Pump Trip
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Results — Unprotected Primary Pump Trip
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Conclusions and Future Work

- This study provides an initial preconceptual design using SAM for a
liqguid immersion blanket outer fuel cycle system to determine future
component level conditions, flow regimes, and heat transfer modes.

- Future work will involve refinement of the simplified model, unprotected
and protected transients to provide information for follow-on component
studies including 1st wall, blanket, and primary heat exchanger design.




The Future? Component “Design” Work!

HX Type Counter-flow Shell & Tube
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The Future? Component “Design” Work!

HX Type

Counter-flow Shell & Tube 10000
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\‘ A. Coxe and L. B. Carasik, In-Prep |
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The Future”? Component Level Investigations!

« /D) =06
w UD) =-1.2

Experimental Flow Visualization
from Twisted Tape-Insert’2

(mm)

. : Temperature Defect
loci
- - - - ” -485.7 0 500 1000 1500 2132.3

CFD Visualization of Twisted Tape-Insert34

1C.S. Wiggins, ..., L. B. Carasik*, 10.1016/j.nucengdes.2022.112125,2C. S. Wiggins, ..., L. B. Carasik*, 10.1007/s00348-024-03860-7, 27
3Sierra Tutwiler, ..., Lane B. Carasik*, 10.1080/15361055.2025.2463818, “Sierra Tutwiler, .., Lane B. Carasik*, DOI: 10.1080/15361055.2025.2470044
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