

Uncertainties of MC calculations

J. Hirtz

8th July 2025

nBHEAM workshop - 2025 J. Hirtz 8th July 2025

Outline

- Objectives
- 2 Methodology
- Parameters optimisation
- Model bias

Objectives

Objectives •000

George E.P. Box: "All models are wrong, but some are useful"

nBHEAM workshop - 2025 J. Hirtz 8th July 2025 4

George E.P. Box: "All models are wrong, but some are useful"

The good question: How much can we trust the models?

nBHEAM workshop - 2025 J. Hirtz 8th July 2025

Objectives

George E.P. Box: "All models are wrong, but some are useful"

The good question: How much can we trust the models?

Uncertainties should answer this question.

nBHEAM workshop - 2025 J. Hirtz 8th July 2025

George E.P. Box: "All models are wrong, but some are useful"

The good question: How much can we trust the models?

Uncertainties should answer this question.

But uncertainties can be badly treated! (Typically: only statistical uncertainties, systematics 10% as default, etc.)

nBHEAM workshop - 2025

INCL-ABLA

Objectives

Spallation reaction (20 MeV - 20 GeV)

IntraNuclear Cascade (INC)

- Degrees of freedom: Hadron
 N, Δ, π, η, ω, Κ, Λ, Σ, ...
- Binary collision
- Hundreds of cross sections

Deexcitation

- DOF: *n*, *p*, *d*, α, ...
- Evaporation, Fission, Multi Fragmentation

INCL-ABLA

Objectives

Spallation reaction (20 MeV - 20 GeV)

IntraNuclear Cascade (INC)

- Degrees of freedom: Hadron $N, \Delta, \pi, \eta, \omega, K, \Lambda, \Sigma, ...$
- Binary collision
- Hundreds of cross sections

Deexcitation

- DOF: n, p, d, α, ...
- Evaporation, Fission, Multi Fragmentation

- Models are not perfect
- There are many "free" parameters

Model bias

Model uncertainties

Optimal parameters
 Parameter uncertainties

Objectives

Model bias → How accurate is the model?

Model uncertainties

Optimal parameters
 Parameter uncertainties

J. Hirtz

Our objectives

Objectives

Model bias \rightarrow How accurate is the model? How close are we to the truth?

Model uncertainties

 Optimal parameters Parameter uncertainties

Objectives

- Model bias → How accurate is the model?
 How close are we to the truth?
- Model uncertainties → How precise is the model?

Optimal parameters
 Parameter uncertainties

- Model bias → How accurate is the model?
 How close are we to the truth?
- Model uncertainties → How precise is the model?
 How much can we trust the model after we corrected for the bias?
- Optimal parameters
 Parameter uncertainties

Objectives

- Model bias → How accurate is the model?
 How close are we to the truth?
- Model uncertainties → How precise is the model?
 How much can we trust the model after we corrected for the bias?
- ullet Optimal parameters Parameter uncertainties o How the errors propagate through the model?

Objectives

- Model bias → How accurate is the model?
 How close are we to the truth?
- Model uncertainties → How precise is the model?
 How much can we trust the model after we corrected for the bias?
- Optimal parameters
 Parameter uncertainties → How the errors propagate through the model?
 What is the impact of such parameter?
 Can we constrain parameter value based on exp. data?

nBHEAM workshop - 2025

A Bayesian approach: Generalised Least Square

Bias/optimal parameters and their uncertainties can both be estimated with the same tool:

the GLS formula:

 Σ_{11} : Covariance matrix between the obs. of interest

 Σ_{22} : Covariance matrix between the exp. data and the model

8th July 2025

Hypotheses:

Linear model (False) \rightarrow need of iterations

Methodology

Gaussian process

(if false: Gibbs sampling: Hirtz et al. EPJA 60:149 (2024))

nBHEAM workshop - 2025 J. Hirtz

GLS: Hypothesis implications

Not a linear model Risk of local minimum

The model has to be realistically able to reproduce data

A Gaussian process

$$\begin{split} \pi_0(y_1) &\propto \exp\left(-\frac{1}{2}(y_1 - \mu_1)^T \Sigma_{11}^{-1}(y_1 - \mu_1)\right) \\ &= \exp\left(-\frac{1}{2}\chi_{11}^2\right) \end{split}$$

The χ^2 is the natural figure of merit for this approach. Other figures of merit could show different results.

The difficulties

CPU limitations

- Number of experimental data taken into account The method requires the inversion of the Σ_{22} , which scales with N^3
- Running time of the model
 Need to run the model many time (iteration, Jacobian)

Covariance matrix limitations

$$\Sigma = \Sigma_{physics} + \Sigma_{exp} + \Sigma_{model}$$

- Understand the correlation between the observables (MLO)
- Understand the systematics of an experiment

nBHEAM workshop - 2025

Parameters optimisation

Far subthreshold K^+ production (J. Hirtz et al. EPJA 60:149 (2024))

Study of a very specific phenomenon (proof of feasibility)

Parameters:

- $\sigma(NN \rightarrow K + X)$ (new = old x1.5)
- $\sigma(\pi N \rightarrow K + X)$ (new = old x0.26)
- $\sigma(\Delta N \rightarrow K + X)$ (new = old x0.43)
- Fermi momentum (new = 232 MeV/c)

Data: V. Koptev et al. Zh. Eksp. Teor. Fiz., 94:1-14, (1988)

nBHEAM workshop - 2025 J. Hirtz 8th July 2025 12 / 20

Far subthreshold K^+ production: figure of merit

A lot of improvement but we started from far and we are still at $\chi^2/DoF\sim 50\gg 1$

The model is still biased and/or the error bars are too small.

nBHEAM workshop - 2025 J. Hirtz 8th July 2025

13 / 20

Model bias

DDNXS: Data used for training (G. Schnabel: EPJNST 4:33 (2018))

Estimation of the model bias and uncertainties on the bias: With the training data: $\chi^2/DoF \sim 1$

Experimental data:

W.B. Amian et al., NSE 112, 78 (1992); T. Nakamoto et al., JNST 32, 827 (1995)

nBHEAM workshop - 2025 J. Hirtz 8th July 2025 15 / 20

DDNXS: Data not used for training

With the data not used for training: $\chi^2/DoF \sim 1$ in most cases but some pathological case unexplained.

Experimental data:

K. Ishibashi et al., JNST 34, 529 (1997)

8th July 2025

16 / 20

nBHEAM workshop - 2025 J. Hirtz

Dejectives Methodology Parameters optimisation Model bias Conclusion
0000 0000 0000 0000 0000

Complementarity: proton induced fission xs (Ho, Ta, Au, Pb, Bi, Th, U, Np, Pu)

Bias alone vs parameter optimisation \rightarrow bias estimation Improved:

fission dissipation coefficient level density curvature

 ^{209}Bi

Results

- Application of GLS to Nuclear models
 - \rightarrow Estimation of best parameters
 - → Estimation of parameters uncertainties (acceptable range, constraints)
 - \rightarrow Estimation of model bias
 - → Estimation of model uncertainties

We improved the model prediction (parameter optimisation), we are able to correct model predictions (model bias), and we can provide realistic uncertainties on our predictions (not just the statistical uncertainties).

- Future: application to various observable
 - → fission rate (ongoing)
 - \rightarrow alpha induced XS
 - \rightarrow etc.

Methodology Parameters optimisation Model bias Conclusion 0000 0000 0000

Limits

Limits

- Prior knowledge (Partially compensated by MLO)
- Experimental covariance matrix
- Number of data to take into account (Pseudo inputs might help)
- Model CPU cost

Forces

- Adaptability
- Excellent interpolation power
- Realistic extrapolation
 - ▶ Projectile type
 - Projectile energy
 - ▶ Target mass
 - ⊳ etc

Collaborators (NURBS project):

J.-C. David

I. Leya

J.-L. Rodríguez-Sánchez

G. Schnabel

Financial support:

ANR-23-CE31-0008